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ABSTRACT

Improving of weather forecast quality is a continuous work, as it is an invaluable for society and environment. WRF model have been
tuned and tested over Georgia’s territory for years. Nowadays as local meteorological network became denser and many remote ob-
servational sources are available data assimilation with variational methods is current challenge. First time in Georgia the process of
data assimilation in Numerical weather prediction is developing, the way for forecast initial conditions’ correction. Assessment of the
forecast error is one of the first and most important steps in data assimilation. This work presents how forecast error statistics appear
in the data assimilation problem through the background error covariance matrix — B, where the variances and correlations associated
with model forecasts are estimated. Statistics of B are usually determined for a limited set of variables, called control variables that
minimize the error covariance between variables. Results of generation and tuning of background error covariance matrix for five con-
trol variables using WRF model over Georgia with desired domain configuration are discussed and presented. The mathematical and
physical properties of the covariances are also reviewed.
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Introduction In the variational data assimilation approach, ap-
plied in geophysical sciences, the dimensions of the
background error covariance matrix (B) are usually
too large to be explicitly determined and B needs
to be modeled. Statistics of the background error
covariance matrix B are usually determined for a
limited set of variables, called control variables that
minimize the error covariance between variables.
Then, several parameters need to be diagnosed to
drive the series of operators that model B. There are
now many leading centres around the world- Euro-
- i pean Centre for Medium-Range Weather Forecast
ed errors that are present in both the obse.rvatlons (ECMWE), the National Centers for Environmen-
and the forecast itself. The foreca}st error 1s.repre- tal Prediction (NCEP), or the UK Met office etc.
sented as background CIToT covartahce m'fltr.lx (B)' that use VAR for weather forecasting, and there are
The specification of backgr'ou'nd cerror Statl.StICS sa often differences in the way that forecast error sta-
key .component of d.ata ass-lmllatlon since it affects tistics are measured, described and used by each [3-
the impact observations will have on the analyses. 5]. In this paper, we present background covariance
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Weather forecast accuracy very demanding on
initial conditions, as small changes in initial condi-
tions can lead to large changes in prediction. Varia-
tional data assimilation (VAR) is the method to esti-
mate the initial state of the atmosphere for weather
prediction to improve forecast quality [1, 2]. VAR
usually combining measurements and models takes
a forecast (also known as the first guess, or back-
ground information) and applies a correction to the
forecast based on a set of observed data and estimat-



N. Kutaladze et al.

matrix’ properties generated for WRF-ARW model
with GEN_BE code over South Caucasus domain
and testing results within the two assimilation sys-
tems GSI and WRFDA. Originally, the GEN_BE
code was developed [6] as a component of a three
dimensional variational data assimilation (3DVAR)
method to estimate the background error of MM5
for a limited-area system. Since this initial version,
various branches of code have been developed at
NCAR and at the UK Met Office to address specific
needs using different models such as (WRF) and the
Unified Model (UM) on different data assimilation
platforms such as the Weather Research Forecast
Data Assimilation system (WRFDA) and the Grid
point Statistical Interpolation system [7, 8]. The first
section of this document describes the role of the
background error covariance matrix B, difficulties
and opportunities of it estimation. The second one
presents general structure of GEN_BE code version
2.0. with some technical details in our application
and provides results of pseudo observation case in
two different systems of data assimilation (WRF-
DA and GSI) using different B matrix involving the
same set of five control variables (CV5). All the re-
sults presented in these papers have been obtained
from WRF model output for 9.2 km resolution do-
main configured and tuned over South Caucasus
domain (Fig.1).

Methods and materials

2.1 Background error covariance matrix and ini-
tial state of atmosphere

The objective of VAR is a cost function J(Jx, x¢)
minimization. This objective function is a combina-
tion of forecast and observation deviations from the
desired analysis, weighted by forecast and observa-
tion-error covariance matrices.

J(0x,x8)=1/2(0x*=0x) " B(ox"—0x)+1/2[y —H(x-

&+0x)|"R7'[y —H(xt+0x)] (Eq.A.1)

Where x is the state vector composed of the model
variables (e.g. winds, pressure, temperature, humid-
ity, etc.) to analyses, at every grid pointDist of the
3-dimensional (3-D) model computational grid [6].

ox 1is difference between the analysis x* and ref-
erence state or the ‘first guess’ x&, i.e.

x*=x% 0x (Eq.A.2)
, 1s the vector of observations and H called the
observation operator, is a mapper from the gridded
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model variables to the irregularly distributed obser-
vation locations. R is the observational error cova-
riance matrix. B is the background error covariance
matrix. The background error covariance matrix de-
scribes the probability distribution function (PDF)
of forecast errors. Theoretically exact knowledge of
R and B would require the knowledge of the true
state of the atmosphere at all times and everywhere
on the model computational grid, what is not possi-
ble. Therefore, both matrices have to be estimated
in practice. Dimension of the B matrix is the square
of the 3-D model grid multiplied by the number of
analyzed variables. For typical geophysical appli-
cations as in meteorology, the size of the B matrix,
comprised of nearly 107x107 entries, is too large to
be calculate explicitly nor be stored in present com-
puter memories. As a result, the B matrix needs to
be parameterized [9, 10].

2.2 Background errors covariance matrix mod-
eling.

The cost function as defined in Eq. (A.1) is usu-
ally minimized after applying the change of a vari-
able:

ox=B1/2u (Eq.A.3)

B'2is the square root of the background error
covariance matrix. The variable u is called the con-
trol variable and the cost function becomes:

J(u)=1/2uTu+1/2(d~HB1/2u)TR—1(d~
HB1/2u) (Eq.A.4)

Where d is the innovation vector defined as d
= (yo—H(xb)) and it represents the difference be-
tween observations and their modeled values using
a non-linear observation operator.

The square root of the B matrix as defined in
Eq. (A3) is decomposed to a series of sub-matrices,
each corresponding to an elemental transform that
can be individually modeled:

U= SUpUvUh (Eq.A.5)

Where, S diagonal matrix and composed of the
standard deviations of the background errors.

U matrix - Physical Transform - defines the
cross-correlations between different analysis Vari-
ables via statistical balance (linear).

U, - Horizontal Transform - defines the horizon-
tal auto-correlations for the control variables. It is
modeled through successive applications of recur-
sive filters [11],
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The matrix U defines the vertical auto-correla-
tions for each of the control variables [12].

If the EOF (Empirical Orthogonal Function)
decomposition is used, the eigenvectors model the
vertical transform (U ) and the associated eigenval-
ues represent the variance. The length scale is esti-
mated in the EOF space and represents the horizon-
tal transform (U, ). In the data assimilation process,
the eigenvalues weight the analysis increment and
the recursive filter first spreads out the information
in the EOF space according to length scale value.
Then, the transformation from EOF mode to physi-
cal space spreads out the information vertically.

Calculations and results

For this study WRF-ARW model over the 9.2
km domain (Fig. B.1) with 151 x 100 x 36 grid
cells have been used.

Background error covariance matrix B was gen-
erated using GEN_BE code version 2.0 in WRFDA.
The code comprises from 5 stages, having separate
input output infrastructure and managed via name
list file, where control variables and all parameters
to model B are defined by user.

Since the background error covariance matrix is
a statistical entity, samples of model forecasts are
required to estimate the associated variances and
correlations of desired variables. The input data for
gen_be are WRF forecasts, which are used to gen-
erate model perturbations, used as a proxy for esti-
mates of forecast error.

NMC (named for the National Meteorological
Center) method [13] was used to represent a sam-
ple of model background errors, where differences
between two forecasts valid at the same time but
initiated at different dates (time lagged forecast, e.g.
24-minus 12 h forecasts) was taken. This is done for
many different dates to build up a large sample size
for calculating statistics. Climatological estimates
of background error may then be obtained by av-
eraging these forecast differences over a period of
time (e.g. one month).

For this run, February 2018 12 and 24-hour
WRF-ARW forecasts, initialized both at 00 and at
12 UTC was used. Thus in all 60 pairs of pertur-
bations are utilized to generate WRF-ARW Back-
ground Error.

On the initial stage analyses control variables
stream function (y) and unbalanced velocity po-
tential (y ) are calculated from u and v wind, then
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differences for following 5 control variables: stream
function (y), unbalanced velocity potential (y,),
Temperature (T), Relative Humidity (q), Surface
Pressure (ps) have been crated. On the next stage
statistics are calculated, such as mean from differ-
ences, created on the initial stage, then performs
perturbation for each control variable and computes
covariance of the respective fields [14].

On the stage 3 regression coefficient & balanced
part of , T and p_variables computed The estima-
tion error for one analysis variable may affect the
value of another if they are correlated. The simplest
way to model them is to use linear regression. First-
ly, the regression coefficients between variables
calculated, then, linear regressions are performed
to derive uncorrelated control variables and then
remove the balanced part for each other variable.
This part achieves the Up transform: it models cor-
relations between variables and allows transforming
the matrix as a diagonal bloc in the control (uncor-
related) space. Computes unbalanced parts for the
same variables:

% =x-%s T, =T-Tp  =p, -p,,is the
preliminary step before estimating the vertical and
horizontal auto-correlation parameters for each con-
trol variable.

Stage 4 Removes mean for x ', T~ & p, " and
computes eigenvectors and eigen values for vertical
error covariance matrix of y , T ', x " and q fields,
variance of p_ “and eigen decomposition of y’, x, ’,
T, and q fields.

On the last stage “lengthscale (s)” calculated for
each variable and each eigen mode.

Bellow on the fig. B. 2 some properties of B
matrix displayed. Namely Fig.B.2. a) (left panel)
represents the first five eigenvectors of psi —Stream
function, chi_u, -unbalanced part of velocity poten-
tial, ¢ u, - unbalanced part temperature and rh-rel-
ative humidity variables. The eigenvectors are the
results of EOF decomposition of the vertical auto
covariance matrix and define vertical transform. On
the Fig.B.2. b) horizontal length scales are shown
for the same 4 variables.

The stream function and the potential velocity
have the largest length scale value reaching 160 km
and 120 km correspondingly. While, the unbalanced
temperature length scale has a strong variation for
the three first EOF passing approximately from 5
to 15 vertical modes and from there decreases from
40km to reach 10 km for the last EOF mode.

As the domain specific forecast error statistics
computed, for diagnose and visualize B matrix prop-
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erties is a good chose to run a single observation test,
where only one (pseudo) observation is assimilated
from a specific time and location within the analysis
domain. In this case in analysis equation:

x*=x°+ BHT(HBH" + R)'[y°-H(x")] (Eq.A.6)

it’s assumed that for any control variable [y°-
H(x*)]=1.0 ; R=1. Thus, x* - x> = B* constant delta
vector and only B matrix is corresponding on spread
of increments in the point across the domain hor-
izontally and vertically. In addition, how it affects
the other variables.

We design our single observation experiment in
this way: temperature was increased with 1 Kelvin
in the center of the domain on the 500-hpa height.
Two variational data assimilation systems WRFDA
with WRF-ARW domain specific background er-
rors and GSI with NAM regional background errors
have been used. For GSI we performed two runs
with B matrix. One of them was without tuning
(lengthscale and variance options were set to 1)
and with tuning (hzscl= 0.373, 0.746, 1.50). Back-
ground Forecast files have been similarly defined in
all cases.

Fig. 3 shows analyses innovation for T, U and V
variables for above-mentioned three runs. Fig.B.3.
a) — corresponds to the results from GSI with re-
gional B (without tuning), Fig.B.3. b) — GSI with
regional B (with tuning), Fig.B.3. ¢) - WRFDA
with our B. Each part of Fig.B.3 (a,b,c) shows two
panels together left side - horizontal (XY at 11th
sigma level) cross-sections of above mentioned
three variables and right part - vertical cross-sec-
tions (XZ).

The first row on all figures show how tempera-
ture increment in the domain center spreaded hor-
izontally and vertically. From figure 3a to 3b area
where increment affects surrounded area reduces
due to tuning length scale and variance parameters.
On the figure 3¢ the affected area more concentrat-
ed in the center and more reduced.

Thus, the temperature Perturbation area pro-
duced from GSI recursive filter is larger than from
WRFDA produced one with EOF mode. On the ver-
tical cross-sections XZ, the temperature innovation
has a larger impact on the vertical using our B than
B, .- These differences come from the dataset used
to model these B matrices, the statistics in B are
more climatological as they are averaged over time
and they are interpolated on the mesh grid of our
domain during the data assimilation process. While
our B constructed from 2-month data set.
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The second and third rows of figure 3 show how
wind U and V components response on temperature
perturbation. Horizontal and vertical cross-sections
of this parameters show similar features.

To validate B matrix within both assimilation
systems the single observation tests’ result are re-
alistic and very close to each other with expected
differences.

Conclusions

WRF model is the main tool for weather forecast
in Georgia. The model have been tuned and test-
ed over Georgia’s territory for years. Nowadays as
local meteorological network became denser and
many remote observational sources are available
to assimilate with variational methods is current
challenge. We are working with two variational as-
similation platforms suitable for this model namely
WRFDA and GSIL.

To estimate model forecast error in variational
assimilation system, background error covariance
matrix B, was successfully modeled and validated
for Georgia’s territory. To model B matrix GEN_BE
v2.0 code has been used where model univariate or
multivariate covariance errors from five control
variables was taken as an input. This code gathers
some methods and options that can be easily applied
to different model inputs and used on different data
assimilation platforms.

Different stages and transforms that lead to the
modeling of the background error covariance ma-
trix B and testing results by performing single ob-
servation tests was described and shown in this pa-
per. B matrix modeled for our domain was tested
on WRFDA platform using the EOF decomposition
and was compared with the similarly designed test
results on GSI platform using the recursive filters to
model the vertical transform. The test shows similar
results with comprehensive differences for the set of
five control variables.
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Appendix B: Figures

Fig. B.1. Extension of the WRF-ARW computational domain
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