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ABSTRACT

Purpose of this study is investigation of Advanced Research Weather Forecasting Model’s (WRF-ARW) skill in Quantitative Precipi-
tation Forecasting for Georgia’s conditions, where orographic features play key role in modeling convectional processes. The Country
territory is prone to flash floods and mudflows, Quantitative Precipitation Estimation (QPE) and Quantitative Precipitation Forecast
(QPF) on any leading time are very important for Georgia. We have analyzed several convection parameterization and microphysical
schemes combination for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precip-
itation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against correspond-
ing rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period
and some skills of model simulation have been evaluated.
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Introduction in the plains, and 800-1,200 mm in the mountains.
Taking into account above mentioned orographic
and synoptic complexity simulation results from

regional NWP do not have the same quality for all

Precipitation forecasts are one of the most de-
manding applications in numerical weather predic-

tion (NWP). Georgia, as the whole Caucasian re-
gion is characterized by very complex topography.
Such complex character of the relief and the vicinity
of the Black and Caspian seas considerably deforms
large-scale (synoptic) processes and causes for-
mation of local and regional peculiarities of atmo-
spheric processes and strong spatial inhomogeneity
of meteorological fields and mainly determines the
precipitation regime all over the territory of Geor-
gia. The climatic picture totally differs in both parts
of Georgia as divided by the Likhi Range. The Black
Sea influences the climate of West Georgia, result-
ing in abundant precipitation. The climate in the
plains of East Georgia is dry. The annual amounts
of precipitation vary in the range of 400-600 mm

areas within the domain. This is especially evident for
precipitation quantitative forecasts, where in contrast
to other forecast variables, generally no significant
improvement could be achieved in the last decade [1-
4]. Quantitative Precipitation Forecasting (QPF) on
regional scales s still inadequate for many applications
such as in hydrology and flood forecasting. For this
purpose, it is essential to simulate precipitation
accurately down to the size of small catchment areas.
Our focus is on the formation and organization of
convective precipitation systems in a low-mountain
region. Several problems in connection with QPF
have been identified for mountain regions, which
include the overestimation and underestimation of
precipitation on the windward and lee side of the
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mountains, respectively, and a phase error in the
diurnal cycle of precipitation leading to the onset of
convective precipitation in model forecasts several
hours too early [5-7].

Many countries have national rain gauge networks
that provide observations that can be used to verify
the model QPFs. Since rainfall depends strongly on
atmospheric motion, moisture content, and physical
processes, the quality of a model’s rainfall prediction
is often used as an indicator of overall model health
[8-10].

Purpose of this study is investigation of Advanced
Research Weather Forecasting Model’s (WRF-
ARW) skill in Quantitative Precipitation Forecasting
for Georgia’s conditions, where orographic features
play key role in modeling convectional processes,
testing several convection parameterization and
microphysical schemes, as well as estimation errors
and biases in accumulated 6 h precipitation using
different spatial resolution for verification model
performance against observations.

1. Data and method

The strategy for any forecast verification
application includes certain rational steps: choosing
and matching a set of forecast/observation pairs,
defining the technique to compare them, aggregating
(pooling) and/or stratifying the forecast/observation
pairs in appropriate data samples, applying the
relevant verification statistics and, ultimately,
interpreting the scores, not forgetting to analyze
the statistical significance of the gained results.
Deterministic QPFs can be formulated and taken
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as either categorical events or continuous variables
and verified correspondingly utilizing respective
verification approaches and measures [11-13].
Veritying QPFs as categorical events is clearly more
common. The categorical approach involves issues
like whether or not it rained during a given time
period (rather than at a given instant) or, alternatively,
whether the rainfall amount exceeded a given
threshold. Verifying rainfall amount as a continuous
variable brings about certain caveats because the
rainfall amount is not a normally distributed quantity.
Very large rainfall amounts may be produced by a
forecasting system and, then again, in some cases
very little or no rain. Many of the verification scores
for continuous variables, especially those involving
squared errors, are very sensitive to large errors.
Consequently, categorical verification scores provide
generally more meaningful information of the quality
of the forecasting systems (or skill of the human
forecasters) producing QPFs [14-15].

The WRF-ARW version 3.1 model was running
operationally on the NEA cluster during several
months with two different model configuration
combining different convective and microphysical
schemes. The simulation was run using the Betts-
Miller-Janjic (BMJ) parameterization, which is
based on the Betts-Miller convective adjustment
scheme, Betts and Miller (1986), with Lin
microphysics scheme, for mother domain and the
same convection scheme with WRF single-moment
6 class microphysics scheme for nest. All simulations
used the Yonsei University Planetary boundary layer
schemes, 5-layer soil model for Surface layer and
Dudhia’s Shortwave and RRTM Long wave radiation

Fig. 1. 6 h total accumulated precipitation from mother and nested domain of WRF-ARW model.
As Station data are point based and model output data are gridded we extracted time series from model output

GRIB files for comparison
2
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schemes. The model performance was carried out
with two way nesting option.

For the study 6 hourly accumulated precipitation
sums from 70 automated weather stations (AWS)/
posts and rain gouges were used (see fig.1). The
number and spatial coverage of precipitation
measurement points is not sufficient for the
characterizing precipitation pattern across the
country. Especially, when in mountainous parts of
country we have very few stations or none at all.

For cross validation of measured precipitation
satellite TRMM (The Tropical Rainfall Measuring
Mission) data files (are nearly real time data in
binary format) from the NASA web site (ftp://
trmmopen.gsfc.nasa.gov/pub/merged/3B42RT)
was investigated. TRMM mainly observe rain
structure, rate and distribution in tropical and
subtropical region, the data play an important roll for
understanding mechanisms of global climate change
and monitoring environmental variation. TRMM
is the first space mission dedicated to measuring
tropical and subtropical rainfall through microwave
and visible/infrared sensors, including the first space
borne rain radar [16].

2. Verification metrics and Calculation

The WRF-ARW model, version 3.1, was used for
simulation. The integration domain covered a roughly
1500 km x1500 km region centered over the south-
Caucasus region. Mother Domain overlaps S 300- N
500 and E 300- W 600 territory, with resolution 9 km
and two-way nest focused mostly on Georgia and its
resolution is 3 km. Forecast was integrated at 0000
UTC 1 April 2015, this month was too rainy this year
( 25 days >1mm) and synoptic processes developed
here varied in wide range. In the present study all
runs were initialized with 25-km NCEP GFS Model
GRIB data, and integrated 72 h. forecast for each day.

Comparisons are made with the surface
observation data 12 h accumulated total precipitation
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which unfortunately very pars for this aim.
Distribution of stations are given on the picture 1.
For each case errors and deviations were estimated
for individual observation point on the all model
simulated forecast valid time: 15h; 27h; 39h; 51h;
63h; ( corresponding to local observation), for any
configuration and both domains.

There are a number of ways to quantify the
verification of NWP models. In this paper, categorical
as well as continuous statistics have been applied.
Categorical statistics can be derived from two-
dimensional contingency tables. We determine the
accuracy of the model to distinguish between rain
and no rain by using contingency tables (Table 1).

This two dimensional table that gives the discrete
joint sample distribution of forecasts and observations
in terms of cell counts. Cell count h is the number of
event forecasts that correspond to event observations
or the number of hits, cell count f is the number of
event forecasts that do not correspond to observed
events or the number of false alarms, cell count

m is the number of no-event forecasts corres-
ponding to observed events or the number of misses,
and cell count z is the number of no-event forecasts
corresponding to no events observed or the number
of zeros. The forecast quality for this (2x2) binary
situation can be assessed using a large number of
different verification measures [17-19].

HR is a categorical forecast score equal to the
total number of correct event forecasts (hits) divided
by the total number of estimates:

HR = correct estimates/total estimates = (h + z)/n
O]

POD is the fraction of those occasions where the
estimation event really occurred:

POD = correct rain estimates/rain observation =h/
(h+m) (2)

It ranges from zero to one, where one indicates
a perfect forecast. POD is very sensitive to the
climatological frequency of the event. It can be

Table 1. Tivo dimensional contingency table

Forecast/observed | Yes No Sum

Yes Hit (h) False alarm (f) Forc. yes
(h+f)

No Miss (m) Correct non-event (z) | Forc. no
(m+z)

Sum Obs. Yes (h+m) Obs. No (f+z) (n=h+f+m+z)




N. Kutaladze et al.

improved by issuing more “yes” forecasts to increase
the number of hits. It also ignores FAR.

FAR is equal to the number of false alarms divided
by the total number of event forecast:

FAR = false rain estimates/rain estimates = f /(h
+1) (3)

It varies from one to zero, where zero indicates
a perfect forecast. It is sensitive to false alarms,
but ignores misses. It is also very sensitive to the
climatological frequency of the event.

Bias score is equal to rain estimates divided by
the rain observations. It can be positive and negative
and ranges from zero to infinity. It is an objective
measure, which mainly addresses precipitation
spatial distribution. A positive bias score shows that
the model overestimates the observation values while
negative bias score indicates an underestimation over
the investigated area.

Bias = rain estimates/rain observations = (h + {')/
(h+m) (4)

Skill score is the relative accuracy of the forecast
over some reference forecast. The reference forecast
is generally an unskilled forecast such as random
chance, persistence defined as the most recent set of
observations which implies no change in condition,
or climatology. Skill score refers to the increase in
accuracy purely due to the “smarts” of the forecast
system. There are as many skill scores as there are
possible scores and they are usually based on the
expression:

SS = (Aestimated - reference)/ ( perfect reference) ©)

The skill scores generally lie in the range 0 to 1,
where the skill score of 1 indicates a forecast better
than reference forecast and 0 indicates it is not better
than the reference forecast. In this study, we have
used the TSS as skill score.
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It is computed from:

TSS = (hz — fm)/((h+m)(f+z)) (6)

It ranges from —1 to 1, where 1 indicates a perfect
forecast. This kind of skill score has been used in
this study because it is independent of dry or wet
regime (Ebert and McBride 1997). Other skill scores,
like the Heidke skill score, depend on the current
precipitation distribution. In this case, the reference
forecast is based on random chance [20-21].

In order to quantify the verification results,
continuous statistics have been used. Continuous
verification measures comprise mean error (ME),
MAE, and root mean square error (RMSE). By using
multicategory contingency tables with three different
thresholds (>5 mm; from 5 to 20 mm and <20 mm)
the accuracy of prediction for each threshold has
been determined.

The metrics based on continues statistics such as
correlation and RMSE were calculated also for GFS
global model. Precipitation simulated with WREF-
ARW model mother and nested domains was verified
using with all statistical parameters described above.

3. Results and discussions

For each station, observed and model simulated
time series were compared and the mentioned
statistical parameters were calculated.

On fig, 3a, verification results of global model
GFS versus observation from several stations are
presented. This metrics varies from station to station,
but both of them are not high correlations are below
0.7 and standardized deviations values also near to 1.
So the GFS model scale for simulated precipitation
cannot satisfy local prediction needs.

POD

EP WP 5G SEC SWC EP WP 56

Fig. 2. Tay lor Diagram for some stations and GFS (a); ME, and MAE of WRF-ARW precipitation forecast
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over 5 subregions in Georgia (b) as well as POD
and FAR (for rain/no rain)(c)

Analyzing the obtained results we grouped
the stations according to the stations elevation
and synoptic processes in the country. Number of
subregions in which the metrics have approximately
the same range is five: South east of Great Caucasus
(SEC), South West Great Caucasus (SWC), Plain
of Eastern Georgia (EP), Plain of Western Georgia
(WP) and Southern Georgia (SG). This statistical
parameters varies from month to month and very
defending to thresholds, also. Most of the synoptic
processes that take place in the country during the
year are caused by the impact of incoming air mases
from the Black Sea, which is often accompanied by
precipitation in western Georgia.

Fromthe Fig3b.) & c.) ME, MAE, POD and FAR
indicates better performance in the subdomain WP,
which was to be expected. This is also facilitated by
the fact that 80% of the daily precipitation in this area
is in the range of 5 to 20 mm, and simulating such an
amount of precipitation by the model is particularly
good, also most of the stations are mainly located
in lowland areas, reducing observation distribution
errors. (Table 2. )

As it is shown at the table 2 model performance
metrics are better for the 12 hour lead time data, for
the station as well as satellite observations. In fact,
it was expected. Results are better when comparing
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model to TRMM than model versus stations. It
should be mentioned, that while comparing observed
data from satellite to station, deviations are even
more than deviation from the forecasted precipitation
and station observations. Obtained results might be
explained by the different nature of precipitation
data, gridded ones from model and satellites and
point based observations from surface stations, with
quite pares coverage of territory.

4. Conclusion

The results of model validation are not homo-
geneous inside of domain and are highly dependent
on the physical content of the synoptic process. The
results are characterized by a certain seasonality. We
compare simulation results of some rainy event with
several physical schemes configuration and different
combination for particular case improves the results,
although using this configuration for other processes
gives worse results. Which emphasizes that in the
future it is desirable to simulate not one configuration
of the model, but several simultaneously and generate
a multi model ensemble, which also need very
long-term and careful validation and verification
with additional metrics. In addition, it is necessary
to systematically verify all available observational
information and allow much longer periods for
comparison.

Table 2. Results of comparison of 12 h and 24 h lead time model forecasted precipitation
and stations measurement and TRMM

Mode vs stations | Mode vs stations | Mode vs. TRMM | Mode vs. TRMM
(12 h) (12h) (12h)
(24 h)
POD 0.781983 0.703396 0.82967 0.761895
Bias 0.278841 0.327582 0.238917 0.266863
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