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Purpose of this study is investigation of Advanced Research Weather Forecasting Model’s (WRF-ARW) skill in Quantitative Precipi-
tation Forecasting for Georgia’s conditions, where orographic features play key role in modeling convectional processes. The Country 
territory is prone to flash floods and mudflows, Quantitative Precipitation Estimation (QPE) and Quantitative Precipitation Forecast 
(QPF) on any leading time are very important for Georgia. We have analyzed several convection parameterization and microphysical 
schemes combination for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precip-
itation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against correspond-
ing rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period 
and some skills of model simulation have been evaluated.
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Introduction

Precipitation forecasts are one of the most de-
manding applications in numerical weather predic-
tion (NWP).  Georgia, as the whole Caucasian re-
gion is characterized by very complex topography. 
Such complex character of the relief and the vicinity 
of the Black and Caspian seas considerably deforms 
large-scale (synoptic) processes and causes for-
mation of local and regional peculiarities of atmo-
spheric processes and strong spatial inhomogeneity 
of meteorological fields and mainly determines the 
precipitation regime all over the territory of Geor-
gia. The climatic picture totally differs in both parts 
of Georgia as divided by the Likhi Range. The Black 
Sea influences the climate of West Georgia, result-
ing in abundant precipitation. The climate in the 
plains of East Georgia is dry. The annual amounts 
of precipitation vary in the range of 400-600 mm 

in the plains, and 800-1,200 mm in the mountains.
Taking into account above mentioned orographic 

and synoptic complexity simulation results from 
regional NWP do not have the same quality for all 
areas within the domain. This is especially evident for 
precipitation quantitative forecasts, where in contrast 
to other forecast variables, generally no significant 
improvement could be achieved in the last decade [1-
4]. Quantitative Precipitation Forecasting (QPF) on 
regional scales is still inadequate for many applications 
such as in hydrology and flood forecasting. For this 
purpose, it is essential to simulate precipitation 
accurately down to the size of small catchment areas. 
Our focus is on the formation and organization of 
convective precipitation systems in a low-mountain 
region. Several problems in connection with QPF 
have been identified for mountain regions, which 
include the overestimation and underestimation of 
precipitation on the windward and lee side of the 
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mountains, respectively, and a phase error in the 
diurnal cycle of precipitation leading to the onset of 
convective precipitation in model forecasts several 
hours too early [5-7]. 

Many countries have national rain gauge networks 
that provide observations that can be used to verify 
the model QPFs. Since rainfall depends strongly on 
atmospheric motion, moisture content, and physical 
processes, the quality of a model’s rainfall prediction 
is often used as an indicator of overall model health 
[8-10].

Purpose of this study is investigation of Advanced 
Research Weather Forecasting Model’s (WRF-
ARW) skill in Quantitative Precipitation Forecasting 
for Georgia’s conditions, where orographic features 
play key role in modeling convectional processes, 
testing several convection parameterization and 
microphysical schemes, as well as estimation errors 
and biases in accumulated 6 h precipitation using 
different spatial resolution for verification model 
performance against observations. 

1. Data and method

The strategy for any forecast verification 
application includes certain rational steps: choosing 
and matching a set of forecast/observation pairs, 
defining the technique to compare them, aggregating 
(pooling) and/or stratifying the forecast/observation 
pairs in appropriate data samples, applying the 
relevant verification statistics and, ultimately, 
interpreting the scores, not forgetting to analyze 
the statistical significance of the gained results. 
Deterministic QPFs can be formulated and taken 

as either categorical events or continuous variables 
and verified correspondingly utilizing respective 
verification approaches and measures [11-13]. 
Verifying QPFs as categorical events is clearly more 
common. The categorical approach involves issues 
like whether or not it rained during a given time 
period (rather than at a given instant) or, alternatively, 
whether the rainfall amount exceeded a given 
threshold. Verifying rainfall amount as a continuous 
variable brings about certain caveats because the 
rainfall amount is not a normally distributed quantity. 
Very large rainfall amounts may be produced by a 
forecasting system and, then again, in some cases 
very little or no rain. Many of the verification scores 
for continuous variables, especially those involving 
squared errors, are very sensitive to large errors. 
Consequently, categorical verification scores provide 
generally more meaningful information of the quality 
of the forecasting systems (or skill of the human 
forecasters) producing QPFs [14-15].  

The WRF-ARW version 3.1 model was running 
operationally on the NEA cluster during several 
months with two different model configuration 
combining different convective and microphysical 
schemes. The simulation was run using the Betts-
Miller-Janjic (BMJ) parameterization, which is 
based on the Betts-Miller convective adjustment 
scheme, Betts and Miller (1986), with Lin 
microphysics scheme, for mother domain and the 
same convection scheme with WRF single-moment 
6 class microphysics scheme for nest. All simulations 
used the Yonsei University Planetary boundary layer 
schemes, 5-layer soil model for Surface layer and 
Dudhia’s Shortwave and RRTM Long wave radiation 
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Fig. 1. 6 h total accumulated precipitation from mother and nested domain of WRF-ARW model.
As station data are point based and model output data are gridded we extracted time series from model output 

GRIB files for comparison
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schemes. The model performance was carried out 
with two way nesting option.

For the study 6 hourly accumulated precipitation 
sums from 70 automated weather stations (AWS)/
posts and rain gouges were used (see fig.1). The 
number and spatial coverage of precipitation 
measurement points is not sufficient for the 
characterizing precipitation pattern across the 
country. Especially, when in mountainous parts of 
country we have very few stations or none at all. 

For cross validation of measured precipitation 
satellite TRMM (The Tropical Rainfall Measuring 
Mission) data files (are nearly real time data in 
binary format) from the NASA web site (ftp://
trmmopen.gsfc.nasa.gov/pub/merged/3B42RT) 
was investigated. TRMM mainly observe rain 
structure, rate and distribution in tropical and 
subtropical region, the data play an important roll for 
understanding mechanisms of global climate change 
and monitoring environmental variation. TRMM 
is the first space mission dedicated to measuring 
tropical and subtropical rainfall through microwave 
and visible/infrared sensors, including the first space 
borne rain radar [16].

2. Verification metrics and Calculation 

The WRF–ARW model, version 3.1, was used for 
simulation. The integration domain covered a roughly 
1500 km x1500 km region centered over the south-
Caucasus region. Mother Domain overlaps   S 300- N 
500 and E 300- W 600 territory, with resolution 9 km 
and two-way nest focused mostly on Georgia and its 
resolution is 3 km. Forecast was integrated at 0000 
UTC 1 April 2015, this month was too rainy this year 
( 25 days >1mm) and synoptic processes developed 
here varied in wide range. In the present study all 
runs were initialized with 25-km NCEP GFS Model 
GRIB data, and integrated 72 h. forecast for each day. 

Comparisons are made with the surface 
observation data 12 h accumulated total precipitation 

which unfortunately very pars for this aim. 
Distribution of stations are given on the picture 1. 
For each case errors and deviations were estimated 
for individual observation point on the all model 
simulated forecast valid time: 15h; 27h; 39h;  51h; 
63h; ( corresponding to local observation), for any 
configuration and both domains.

There are a number of ways to quantify the 
verification of NWP models. In this paper, categorical 
as well as continuous statistics have been applied. 
Categorical statistics can be derived from two-
dimensional contingency tables. We determine the 
accuracy of the model to distinguish between rain 
and no rain by using contingency tables (Table 1). 

This two dimensional table that gives the discrete 
joint sample distribution of forecasts and observations 
in terms of cell counts. Cell count h is the number of 
event forecasts that correspond to event observations 
or the number of hits, cell count f is the number of 
event forecasts that do not correspond to observed 
events or the number of false alarms, cell count

m is the number of no-event forecasts corres-
ponding to observed events or the number of misses, 
and cell count z is the number of no-event forecasts 
corresponding to no events observed or the number 
of zeros. The forecast quality for this (2×2) binary 
situation can be assessed using a large number of 
different verification measures [17-19].

HR is a categorical forecast score equal to the 
total number of correct event forecasts (hits) divided 
by the total number of estimates:

HR = correct estimates/total estimates = (h + z)/n   
(1)

POD is the fraction of those occasions where the 
estimation event really occurred:

POD = correct rain estimates/rain observation =h/
(h + m)  (2)

It ranges from zero to one, where one indicates 
a perfect forecast. POD is very sensitive to the 
climatological frequency of the event. It can be 

Forecast/observed Yes No Sum
Yes Hit (h) False alarm (f) Forc. yes 

( h + f )

No Miss (m) Correct non-event (z) Forc. no 
( m + z )

Sum Obs. Yes (h+m) Obs. No (f+z) (n=h+f+m+z)

Table 1. Two dimensional contingency table

N. Kutaladze et al.
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improved by issuing more “yes” forecasts to increase 
the number of hits. It also ignores FAR.

FAR is equal to the number of false alarms divided 
by the total number of event forecast:

FAR = false rain estimates/rain estimates = f /(h 
+ f )  (3)

It varies from one to zero, where zero indicates 
a perfect forecast. It is sensitive to false alarms, 
but ignores misses. It is also very sensitive to the 
climatological frequency of the event.

Bias score is equal to rain estimates divided by 
the rain observations. It can be positive and negative 
and ranges from zero to infinity. It is an objective 
measure, which mainly addresses precipitation 
spatial distribution. A positive bias score shows that 
the model overestimates the observation values while 
negative bias score indicates an underestimation over 
the investigated area.

Bias = rain estimates/rain observations = (h + f )/
(h + m)  (4)

Skill score is the relative accuracy of the forecast 
over some reference forecast. The reference forecast 
is generally an unskilled forecast such as random 
chance, persistence defined as the most recent set of 
observations which implies no change in condition, 
or climatology. Skill score refers to the increase in 
accuracy purely due to the “smarts” of the forecast 
system. There are as many skill scores as there are 
possible scores and they are usually based on the 
expression:

SS = (Aestimated - Areference)/(Aperfect - Areference)      (5)
The skill scores generally lie in the range 0 to 1, 

where the skill score of 1 indicates a forecast better 
than reference forecast and 0 indicates it is not better 
than the reference forecast. In this study, we have 
used the TSS as skill score. 

It is computed from:
TSS = (hz – fm)/((h+m)(f+z))   (6)
It ranges from −1 to 1, where 1 indicates a perfect 

forecast. This kind of skill score has been used in 
this study because it is independent of dry or wet 
regime (Ebert and McBride 1997). Other skill scores, 
like the Heidke skill score, depend on the current 
precipitation distribution. In this case, the reference 
forecast is based on random chance [20-21].

In order to quantify the verification results, 
continuous statistics have been used. Continuous 
verification measures comprise mean error (ME), 
MAE, and root mean square error (RMSE). By using 
multicategory contingency tables with three different 
thresholds (>5 mm; from 5 to 20 mm and <20 mm) 
the accuracy of prediction for each threshold has 
been determined. 

The metrics based on continues statistics such as 
correlation and RMSE were calculated also for GFS 
global model. Precipitation simulated with WRF-
ARW model mother and nested domains was verified 
using with all statistical parameters described above. 

3. Results and discussions

For each station, observed and model simulated 
time series were compared and the mentioned 
statistical parameters were calculated. 

On fig, 3a, verification results of global model 
GFS versus observation from several stations are 
presented. This metrics varies from station to station, 
but both of them are not high correlations are below 
0.7 and standardized deviations values also near to 1. 
So the GFS model scale for simulated precipitation 
cannot satisfy local prediction needs. 
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Fig. 2. Tay lor Diagram for some stations and GFS (a); ME, and MAE of WRF-ARW precipitation forecast 
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over 5 subregions in Georgia (b) as well as POD 
and FAR (for rain/no rain)(c)

Analyzing the obtained results we grouped 
the stations according to the stations elevation 
and synoptic processes in the country. Number of 
subregions in which the metrics have approximately 
the same range is five: South east of Great Caucasus 
(SEC), South West Great Caucasus (SWC), Plain 
of Eastern Georgia (EP), Plain of Western Georgia 
(WP) and Southern Georgia (SG). This statistical 
parameters varies from month to month and very 
defending to thresholds, also. Most of the synoptic 
processes that take place in the country during the 
year are caused by the impact of incoming air mases 
from the Black Sea, which is often accompanied by 
precipitation in western Georgia. 

From the Fig 3 b.) & c.)  ME, MAE, POD and FAR 
indicates better performance in the subdomain WP, 
which was to be expected. This is also facilitated by 
the fact that 80% of the daily precipitation in this area 
is in the range of 5 to 20 mm, and simulating such an 
amount of precipitation by the model is particularly 
good, also most of the stations are mainly located 
in lowland areas, reducing observation distribution 
errors. (Table 2. )

As it is shown at the table 2 model performance 
metrics are better for the 12 hour lead time data, for 
the station as well as satellite observations. In fact, 
it was expected. Results are better when comparing 

model to TRMM than model versus stations. It 
should be mentioned, that while comparing observed 
data from satellite to station, deviations are even 
more than deviation from the forecasted precipitation 
and station observations. Obtained results might be 
explained by the different nature of precipitation 
data, gridded ones from model and satellites and 
point based observations from surface stations, with 
quite pares coverage of territory. 

4. Conclusion

The results of model validation are not homo-
geneous inside of domain and are highly dependent 
on the physical content of the synoptic process. The 
results are characterized by a certain seasonality. We 
compare simulation results of some rainy event with 
several physical schemes configuration and different 
combination for particular case improves the results, 
although using this configuration for other processes 
gives worse results. Which emphasizes that in the 
future it is desirable to simulate not one configuration 
of the model, but several simultaneously and generate 
a multi model ensemble, which also need very 
long-term and careful validation and verification 
with additional metrics. In addition, it is necessary 
to systematically verify all available observational 
information and allow much longer periods for 
comparison.

Mode vs stations   
(12 h)

Mode vs stations

(24 h)

Mode vs. TRMM 
(12h)

Mode vs. TRMM 
(12h)

POD 0.781983 0.703396 0.82967 0.761895
Bias 0.278841 0.327582 0.238917 0.266863

Table 2. Results of comparison of 12 h and 24 h lead time model forecasted precipitation
and stations measurement and TRMM
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