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ABSTRACT

Present study evaluates hindcast over the Caucasus Region of the multi-model system, comprising from 4 ERA-Interim-driven regional
climate models (RCM) and the high resolution GCM-MRI-AGCM3 of Meteorological Research Institute (MRI). In total, five climate
models simulations were assessed against the CRU observational database. Present work focuses on the mean surface air temperature.
The study shows the performance of the members of ensembles in representing the basic spatiotemporal patterns of the climate over
the territory of Georgia for the period of 1991-2003. Different metrics covering from monthly and seasonal to annual time scales are
analyzed over the region of interest: spatial patterns of seasonal mean, annual cycle of temperature, as well monthly mean temperature
bias and inter annual variation. The results confirm the distinct capabilities of climate models in capturing the local features of the
climatic conditions of the Caucasus Region. This work is in favor to select models with reasonable performance over the study region,
based on which a high-resolution bias-adjusted climatic database can be established for future risk assessment and impact studies.
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Introduction Climate model evaluation is a fundamental step
in estimating the uncertainty in future climate pro-

Assessing the impacts of the anticipated climate jections. Because of the crucial role of climate mod-

variations and change on regionally important sec-
tors is growing in their importance. The primary
tool for projecting climate are global climate models
(GCMs) that are typically run at course horizontal
resolutions, because of their massive computational
and data storage requirements. GCMs’ output can-
not be directly used for impact study and requires
downscaling on a finer scale, for which regional cli-
mate models (RCM) are developed. RCM data are but also for assessing and correcting model biases.

essential for assessing the impact of climate change Model evaluations are also used to weight individ-
on different socio-economic sectors. ual models in multi-model ensembles, alleviate the

els in this process, it is essential to characterize their
strengths, weaknesses and uncertainties. Impact as-
sessments typically start with climate data as inputs,
and involve a series of calculations using multiple
models through which information propagates hi-
erarchically. Climate model evaluation is used not
only for model development and improvements
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effect of model error on assessment models, and es-
timate the range of uncertainty in projected impacts.

Uncertainties in climate projections come from
multiple sources including incomplete model for-
mulations, future emissions scenarios, and how
these are folded together with elements of human
behavior, technological advancements and social/
government structures. Among these, model errors
are probably the most viable to characterize, and
potentially remedy to reduce the uncertainty. Model
evaluations are typically performed by comparing
model outputs against reference data from observa-
tions or reanalysis using suitable metrics [1-3], and
can be further used to guide model improvement
and/or for bias correction [4]. Measuring model per-
formance objectively is of a particular importance
in the practice of applying climate model outputs
to climate change impact assessments which em-
ploys bias correction and/or multi-model ensemble
[5-9]. Previous studies attempt to identify a single
parameter representative of overall model perfor-
mance [10-12], that can be applicable to objective
multi-model ensemble and/or bias correction. Cau-
tion must be exercised in such attempts and ap-
plication of their results, however, because spatial
and temporal variations in model performance can
introduce a substantial amount of uncertainties in
calculating such indices. GCM evaluations have
been well-established [13-17], but collective and
systematic evaluation of RCMs is much less mature
[18-21]. Considering the importance of RCMs in
studying climate change and assessing its impacts,
it is critical to apply as much observational scrutiny
as possible to RCMs.

Systematic multi-model RCM experimentations
and observation-based evaluations are much less
mature than those for GCM studies. The long his-
tory of GCM analyses for assessments and other
climate variability issues has resulted in a mature
process of model experimentation and evaluation
[22-25]. Evaluation of the fidelity in simulating
the present-day climate of multiple GCMs that
have contributed to the archives of phase 3 of the
Coupled Model Intercomparison Project (CMIP3)
used for the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4).
The CORDEX program was established as the first
activity of the Task Force on Regional Climate
Downscaling established by World Climate Re-
search Program (WCRP). Common experimental
designs in CORDEX are advantageous for many
practical purposes including model evaluations, un-
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certainty assessments, and constructing multi-mod-
el ensemble (ENS).

This study evaluates the 4 RCM and a high res-
olution global model simulations over the Georgia
using Regional Climate Model Evaluation System
(RCMES). We include in this research 2 RCMs’
(RegCM v 4.7.0 and WRF-ARW v3.9.1.1) simula-
tions over the domain centered to Georgia performed
by us and 2 simulations over different domains from
the CORDEX program. Namely RCA4 over MENA
(Middle East and North Africa) and HadRM3P over
CAS (central Asian domain). Such a choice has re-
sulted in the fact that only these two domains over-
laps our target area and the evolutionary simula-
tions are available only for these 2 models on ESGF
(Earth System Grid Federation)-CORDEX archive.
High resolution GCM - MRI-AGCM3.2 output was
provided from the Meteorological Research Insti-
tute of Japan Meteorology agency.

Section 1 provides details of the experimental
design including the evaluation domain, RCMs, ref-
erence datasets, section 2 — climate description of
Country, section 3 provides details of the Regional
Climate Model Evaluation System (RCMES) used
in the model evaluation. Section 4 presents the
evaluation of RCM skill in simulating the targeted
variables and examines the uncertainties in model
evaluation related with reference data. Results are
summarized in Sect. 5.

Main part

1. Data. In this paper, we used several data ar-
chives, most of them are available from the federa-
tive ESGF infrastructure, including Coordinated Re-
gional climate Downscaling Experiment (CORDEX).
We downloaded CORDEX simulations over central
Asia (CAS) and the Middle East and North Africa
(MENA) domains, covering South Caucasus territory.

Hindcast from the high-resolution atmospher-
ic general circulation model of the Meteorological
Research Institute (MRI) and two our simulations
from two regional models RegCM4 and WRF with
different configuration over the same domain (cen-
tered to South Caucasus territory) and with the same
resolution have also been evaluated.

As for observations, we used global gridded obser-
vations and reanalysis of 2-meter air temperature data.

1.1. Observational data. For validation of indi-
vidual models, also for ensemble the gridded global
data set of the Climate Research Unit (CRU) was
used. The monthly CRU data represent one of the
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most comprehensive observational data sets avail-
able and have been widely used for former studies.
These observational data sets are based on statis-
tical interpolation methods, which are a gridded
time-series dataset. We used latest version TS 4.03,
released 15 May 2019, covering the period 1901-
2018 Coverage: All land areas (excluding Antarcti-
ca) at 0.5° resolution for six Variables [26].

Despite the existing studies reveals that there are
clear biases between the observed surface air tem-
perature and the (GHCN + CAMS) data sets, they
vary in space and seasons. We decide to compare
this two gridded temperature dataset over Georgia.
This data set at 0.5 X 0.5 latitude-longitude resolu-
tion is different from some existing surface air tem-
perature data sets in: (1) using a combination of two
large individual data sets of station observations
collected from the Global Historical Climatology
Network version 2 and the Climate Anomaly Moni-
toring System (GHCN + CAMS) [27].

1.2. Reanalysis data. As all Regional climate
models are forced with ERA-Interim - reanalysis
of the global atmosphere dataset, compatibility be-
tween reanalysis and observations (CRU) was also
established.

The main objectives of the ERA-Interim project
were to improve on certain key aspects of ERA-
40 (previous version of ERA-Interim), such as the
representation of the hydrological cycle, the quality
of the stratospheric circulation, and the handling of
biases and changes in the observing system. These
objectives have been largely achieved as a result
of combination of factors, including many model
improvements, the use of 4-dimensional variation
analysis, a revised humidity analysis, the use of
variation bias correction for satellite data and other
improvements in data handling.

The ERA-Interim atmospheric model and reanal-
ysis system uses cycle 3112 of ECMWE’s Integrat-
ed Forecast System (IFS), configured for the spatial
resolution - T255 spherical-harmonic representation
for the basic dynamical fields and a reduced Gauss-
ian grid with approximately uniform 79 km spacing
for surface and other grid-point fields [28-29].

2. Climate models used in the study. Regional
climate models (RCMs) are useful tools for the pro-
jection of climate change on regional scales. Unlike
GCMs, the model domain of an RCM does not cov-
er the entire globe. It is restricted to a certain area of
regional scale.

This restriction allows for long-term simulations
with higher resolutions. On the other hand, this im-

Annals of Agrarian Science 18 (2020) 507-520

plies that information about the lateral and lower
boundary conditions (LBCs) has to be provided.
These LBCs can be derived from GCM simulations
or from observational data sets (usually reanalysis
products).

RCAA4. Since 1997 the Rossby Centre has devel-
oped an international standing in the field of region-
al climate modelling with the development of the
atmospheric model RCA, at SMHI.

RCA is based upon the numerical weather pre-
diction (NWP) model HIRLAM. The RCA4 dy-
namical core is a two time-level, semi-Lagrangian,
semi-implicit scheme with six-order horizontal
diffusion applied to the prognostic variables. Grid
boxes in RCA4 can include fractions of sea (with
fractional ice cover) or lake (with ice or not) and
land. The land fraction can be further subdivided
into forest and open land, where both can be partly
snow covered. Each sub-grid scale tile has a sepa-
rate energy balance equation and individual prog-
nostic surface temperatures.

The model was driven by European Centre for Me-
dium-Range Weather Forecasts (ECMWF) ERA-In-
terim reanalysis data to run the CORDEX Evaluation
experiment, representative of the period from 1981 to
2010, over the Middle East and North Africa (MENA)
domain called CORDEX-MENA [30-31].

HadRMB3P is Hadley’s Regional limited-area re-
gional climate model widely used worldwide as part
of the PRECIS (Providing Regional Climates for
Impacts Studies) system, which was developed at
the Hadley Centre of the United Kingdom Met Of-
fice. HadAM3P is a grid-point model which solves
equations of motion, radiative transfer and dynam-
ics explicitly on the same scale as the grid. The at-
mospheric equations are a quasi-hydrostatic version
of the primitive equations with full representation
of the Coriolis force. Other, mostly thermodynamic,
processes that occur at the sub-grid-scale are rep-
resented by physical parametrizations. Model has
0.44 x 0.44 degrees’ resolution with a rotated pole
to achieve approx. 50 km x 50 km resolution on 19
levels (used for the EU region, South Asia, planned
for East Asia). Also used is a double resolution vari-
ant at 0.22 x 0.22 degrees (Western US, planned for
EU and Africa).

The model was driven by European Centre for
Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis data to run the CORDEX
Evaluation experiment, representative of the period
from 1990 to 2011, over Central Asia domain with
0.44-degree resolution (CAS-44 domain) [32, 33].
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RegCM v 4.7.0. Regional Climate Model ver-
sion 4 - RegCM model is limited-area regional
climate model. It uses the radiation scheme of the
NCAR CCM3, the cloud scattering and absorp-
tion parameterization follow that of S/ingo (1989),
whereby the optical properties of the cloud droplets
(extinction optical depth, single scattering albedo,
and asymmetry parameter) are expressed in terms
of the cloud liquid water content and an effective
droplet radius. The soil hydrology calculations in-
clude predictive equations for the water content of
the soil layers.

Compared to previous versions, RegCM4 in-
cludes new land surface, planetary boundary layer,
and air-sea flux schemes, a mixed convection and
tropical band configuration, modifications to the
pre-existing radiative transfer and boundary lay-
er schemes, and a full upgrade of the model code
towards improved flexibility, portability and user
friendliness. The model can be interactively coupled
to a 1D lake model, a simplified aerosol scheme
(including organic carbon, black carbon, SO4, dust
and sea spray) and a gas phase chemistry module
(CBM-Z) [34-36].

WRF-ARW v3.9.1.1 - Weather Research and
forecasting model (Grell scheme). The WRF mod-
el is a state-of-the-art, next-generation mesoscale
numerical weather prediction system designed to
serve both operational forecasting and atmospher-
ic research needs (http://www.wrf-model.org). It
is a non-hydrostatic model, with several available
dynamic cores as well as many different choices
for physical parameterizations suitable for a broad
spectrum of applications across scales ranging from
meters to thousands of kilometers. The physics
package includes microphysics, cumulus param-
eterization, planetary boundary layer (PBL), land
surface models (LSM), longwave and shortwave
radiation.

The WRF model is a state-of-the-art, next-gen-
eration mesoscale numerical weather prediction
system designed to serve both operational forecast-
ing and atmospheric research needs (http://www.
wrf-model.org). It is a non-hydrostatic model, with
several available dynamic cores as well as many
different choices for physical parameterizations
suitable for a broad spectrum of applications across
scales ranging from meters to thousands of kilo-
meters. The dynamic cores in WRF include a fully
mass- and scalar-conserving flux form mass coor-
dinate version. The soil scheme solves the thermal
diffusivity equation using five soil layers and the en-
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ergy budget includes radiation, sensible, and latent
heat fluxes. It treats the snow-cover, soil moisture as
fixed quantities with a land use and season-depen-
dent constant value. The terrain, land use and soil
data are interpolated to the model grids from USGS
global elevation, 24 category USGS vegetation data
and 17 category FAO soil data with suitable spa-
tial resolution (arc 5 minutes) to define the lower
boundary conditions [37-38].

MRI-AGCMa3. A new version of the atmospher-
ic general circulation model of the Meteorological
Research Institute (MRI), with a horizontal grid size
of about 20 km, has been developed. The previous
version of the 20-km model, MRIAGCM3, which
was developed from an operational numerical
weather-prediction model, provided information on
possible climate change induced by global warm-
ing, including future changes in tropical cyclones,
the East Asian monsoon, extreme events, and block-
ings. For the new version, MRI-AGCM3.2, various
new parameterization schemes have been intro-
duced that improve the model climate. Using the
new model, a present-day climate experiment has
been performed using observed sea surface tempera-
ture. The model shows improvements in simulating
heavy monthly-mean precipitation around the tropi-
cal Western Pacific, the global distribution of tropical
cyclones, the seasonal march of East Asian summer
monsoon, and blockings in the Pacific [39, 40].

2. Country climatology. Georgia’s location on
the northern edge of the subtropical zone between
the Black and Caspian seas, on the one hand and on
the other hand, complexity of its special topography
determines the variety of climate conditions. Local
climate creates Black Sea and the Caucasus. The
last protects Georgia from direct invasion of cold
air masses from the North and the Black Sea makes
moderate temperature fluctuations and contributes
large amount of precipitation, especially in western
Country. Very important is the Likhi Range, running
from the North to the South and dividing the Coun-
try into its eastern and western parts, with quite dif-
ferent climatic pictures.

Temperature regime of the territory, as a climate
in whole, is characterized by a range of peculiar-
ities stipulated mainly by the geographic location
of Georgia, complex relief of the occupied terri-
tory, radiation pattern and prevailing atmospheric
circulation processes. As orography on the territory
varies from 0+5068 m correspondently mean annu-
al temperature fluctuate in the range of -5, +15°C
approximately.
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Table 1. Summary of data used in this study

Data set/version Time range Resolution References

Observation & reanalysis
CRUVTS 4.03 1901-2018 0.5°X0.5° Climate Research Unit (CRU)
GHCN + CAMS 1948- to near present | 0.5° X 0.5° NOAA/OAR/ESRL PSD
ERA-Interim 1979- to near present | 79 km ECMWF

Climate models

SMHI-RCA4 1981-2010 0.22°X 0.22° | SMHI/Rossby Centre
HadRM3P 1990-2011 0.44° X 0.44° | Met Office
RegCM v 4.7.0 1985-2015 15 km ICTP
WRF-ARWv3.9.1.1 | 1985-2015 15 km NCAR/NCEP
MRI-AGCM3 1979 -2003 20 km MRI -IMA

Due to the Country climate regime, territory was
divided in 8 sub-regions to examine the simulation
performance across the experiments on different
sub-regions. These regions mostly cover Georgia’s
territory but also include some other parts, according
to the factors of local climate formation. On Fig.1.
location and names of sub-regions are presented,
where R0O1, R02 and RO3 are, respectively, West-
ern, Central and Eastern parts of Greater Caucasus
mountains, R04 - Kolkheti Lowlands, R0O5 - Central
part of Georgia including Likhi range, R06 — Adja-
ra Black Sea coastal zone with adjacent mountains,
RO7 - Lesser Caucasus mountains, R07 - Eastern
Country plane territory.

3. The Regional Climate Model Evaluation
System (RCMES). RCMES is an open, public-
ly accessible process enabled by leveraging the
Apache Software Foundation’s OSS library, Apache
Open Climate Workbench (OCW). RCMES pro-
vides datasets and tools to assess the quantitative
strengths and weakness of climate models, typically
under present climate conditions for which we have
observations for comparison, which then forms a
basis to quantify our understanding of model uncer-
tainties in future projections.

RCMES is composed of two main components,
the Regional Climate Model Evaluation Database
(RCMED) and the Regional Climate Model Eval-
uation Toolkit (RCMET). RCMED can reside on
a single server or be distributed on multiple serv-
ers to allow efficient data management and sharing
while reducing the hardware and software burdens

for handling the data storage and traffic. Observed
data are fundamental to model evaluation. The de-
mands from higher resolution and multivariate eval-
uation make the scientific and logistical process of
model evaluation ever more challenging. RCMED
bringing together massive amounts of observational
and model data, but also dealing with the wide va-
riety of sources and formats of data, necessitating
significant investments in computer and personnel
resources to transfer, decode, (re)format, (re)ar-
chive, and analyze the data. Such steps can make
the process of performing robust model evaluations
extremely difficult and time consuming even for
highly trained scientists.

RCMET includes a software suite for calculating
statistical metrics popularly used in model evalua-
tions and visualizations. Model-evaluation metrics
and visualization generally vary widely according
to users and targets; RCMET includes the capability
to incorporate user-defined metrics as well as path-
ways to extract partially processed data (e.g., both
model and reference data regridded onto a common
grid) so that users can do their own specific data
processing and visualizations.

4. Results. The spatial distribution and annu-
al cycle of mean monthly temperature along with
the bias averaged over the entire analysis region
and eight sub-regions (Fig.1), selected to examine
climate models skills across varied geographical
landscape are presented in this work. The analysis
focuses on how the model simulates surface climate
(temperature) in response to the large-scale forcing
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imposed by the ERA-Interim reanalysis and by lo-
cal topographical features. All the analysis present-
ed here is carried out over the interior domain to
eliminate the buffer zone where the direct effect of
the lateral boundary conditions is maximum.

4.1. Evaluation metrics. Different metrics have
been used in order to represent the performance of
climate models in simulating climatic conditions. Be-
sides computing the mean bias and root mean square
error (RMSE), the degree of statistical similarity be-
tween two climatic fields was quantified in the form
of normalized Taylor diagrams that can be considered
as the combination of different measures such as the
centered (or bias removed) RMSE, spatial standard
deviation (STD), and spatial correlation. The Taylor
diagrams reported in the present study are based on
13-yr annual and seasonal means in grid points.

4.2. Uncertainties assessment. The accuracy
of reference data is among the most important con-
cerns in model evaluation. All observations and/or
analyses include errors of unknown/estimated mag-
nitudes; e.g., analyses based on surface station data
are directly affected by local station density. This
especially true for the Caucasus region in which sta-
tion density varies substantially according to regions.
Uncertainties in model evaluation originating from
reference data are examined using three different
reference datasets. In addition to CRU, ERA-Inter-
im (ECMWF Re-Analysis) and the GHCN_CAMS
(Global Historical Climatology Network v2 and the
Climate Anomaly Monitoring System) are selected
for the same period as models evaluation was per-
formed. All CMs yield higher spatial correlations
with the CRU than GHCN_CAMS and ERA-In-
terim. The standardized deviations and RMSE are
smaller against CRU and GHCN_CAMS, i.e. the
spatial variability of the ERA-Interim data is larger
than other two datasets (Fig.2).

Fig.3 shows the spatial distribution of mean an-
nual temperature biases averaged over the entire
13-yr period compared to the CRU, GHCN and ER-
AINT datasets. In all seasons (not shown) the tem-
perature bias against CRU data ranges between -4°
and 4°C over the most of domain, except in winter
and for annual means, when the bias mostly ranges
between -3° and 3°C. Differences between models
and ERAINT and GHCN_CAMS data range be-
tween -4° and 4°C in summer and for annual biases,
but in the rest of seasons it is increased up to -6°
and 6° C. As for GHCN_CAMS dataset, all models
deviate from observation in the range -4° and 4°C,
increasing to -6 and 6°C in winter season.
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Best fit was revealed with CRU, biases of mod-
els are the smallest, but there are some systemati-
cally occurred features in the spatial distribution of
these differences, i.e. relative to CRU and GHCN _
CAMS it is noticeable cold bias over lowlands and
plain territory and warm bias is the most evident
in summer and winter over Caucasus. As for ER-
AINT, in contrary, for all simulations cold bias is
occurred over mountainous areas, especially over
Greater Caucasus range, warm bias — over low-
lands and plain territory, that is the most evident in
summer. Although evaluation of models against all
three observation datasets demonstrates the spa-
tial features of temperature biases and bias pattern
is comparable with the terrain profile. It must be
noticed, that moving towards the originally high-
er resolution information, the finer the details are
in the spatial distribution of the seasonal tempera-
ture fields and the spatial features of deviations of
mean seasonal temperature fields of ensemble sim-
ulations even reveal the ranges of Likhi Mountains
(dividing west and east Country), which is in fact
is especially clearly seen in winter season for all
simulations.

The differences between the temperature evalu-
ations based on the three observation datasets, may
have resulted from the difference in the observa-
tional platform and methodologies. This examina-
tion shows that, quality control and cross-examina-
tion of reference datasets are important for model
evaluations.

4.3. Evaluation results. In this study the base-
line evaluation of the mean surface air temperature
is presented against CRU dataset. As it was already
mentioned, the most noticeable feature is the gen-
eral warm bias over the Greater and Lesser Cau-
casus mountains and cold bias in the lowlands and
plain territory (Fig.3). The spatial patterns of cold
biases for all simulations except AGCM3 are sim-
ilar, with the largest magnitudes being located in
west Georgia lowlands. However, the cold biases
in the WRFC and RegCM4 simulations are gen-
erally larger and extended over east Georgia plain
territory. The warm bias is found in all simulations
except RCA4. RCA4 is an outlier among these
five CMs in the sense that it generates general cold
biases over almost the entire study area. Another
difference between the five simulations is that in
the HaDRM3P simulation warm biases of more
than 2°C are largely confined to Greater and Lesser
Caucasus highlands, reaching its maximum magni-
tude up to 3°C in DJF season, when this warm bias
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clearly depicted in other three simulations (except
RCA4) as well. On the contrary, the only GCM
(AGCM3) (Fig.3) generates overall warm biases.
Unlike in the AGCM3 simulation, annual bias is
the smallest (£1°C) but without clear dependence
on topography, only in winter months there is ev-
ident positive (up to 3°C) deviation area covering
mountainous part of the Country.

As it seems all RCMs except RCA4, overesti-
mate the surface temperatures over the high eleva-
tion regions and underestimate low elevations re-
sulting the least deviated ENS results regarding to
observation in the range +1.5°C.

Overall, all models simulate the spatial varia-
tions in the annual mean temperatures over Geor-
gia with the spatial pattern correlation coefficients
between 0.95 and 0.99 and standardized deviations
(the spatial standard deviation of the simulated sur-
face air temperature normalized by that of the ob-
served data) of 0.8—1.15 with respect to the CRU
data, except WRFC with much lower STD of 0.65
(Fig.2). Fig.2 also shows that the multi-model en-
semble mean (ENS), along with AGCM3, yield the
smallest RMSE.

Comparison of the simulated annual cycle
against the CRU analysis for the sub-regions shows
that the multi-model ensemble is generally in well
agreement with observed climatology in these re-
gions and all five simulations have almost identical
annual cycle and a similar range in monthly mean
temperatures averaged over sub-regions, with dif-
ferences up to 5°C between separate models. How-
ever, despite the reasonable performances, model
biases vary noticeably according to regions and sea-
sons (Fig.4).

Fig.4 shows some time dependency of model
deviations, as temperature biases are not constant
in time. They have a more or less clear annu-
al cycle: there is one of five CMs (RCA4) with
a constant negative temperature bias through the
entire year, for other four models temperature is
generally overestimated in winter (exceeding 4°C
in January and February), whilst underestimated to
a varying extent in the rest of the year resulting
ensemble simulations negative bias. Therefore, the
seasonal variation in the magnitude of the bias in
arca-average temperature means that the ENS sim-
ulation has a less extreme annual cycle than the
annual cycle of the observations. In the transient
seasons (spring, autumn), all regions of the study
territory have a cold bias. This appears to be larg-
est over the west Georgia lowlands. Warm bias in
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area-mean temperature is greatest during winter. In
this season, warm biases extend over entire moun-
tainous regions including the Greater and Lesser
Caucasus. This may be related to the simulation
of cold-season snowpack in the high-elevation re-
gions and/or the lack of resolutions both in model
simulations and the CRU data, suitable for repre-
senting the large orographic variations and associ-
ated variations in surface temperature in the moun-
tainous region.

Fig.5 presents the normalized biases and in-
terannual variability in terms of the percentage of
the temporal standard deviations of the CRU data
over the 13-yr period, of the simulated surface air
temperatures in the eight sub-regions during each
season. The temporal standard variations are ad-
opted as the measure of the interannual variabili-
ty. The scaled model bias shows that the warm bias
over the Caucasus mountains is common for nearly
all models (except RCA4) only in winter; RCA4,
which generates quite strong (by 50%—150% of the
observed interannual variability) cold biases over
the region in winter, is the only exception. As for
cold bias on the intermountain low elevation area
negative bias is systematic regardless of models and
seasons for west Georgia and more evident in tran-
sient seasons for east Country plains.

Models skill in simulating the interannual vari-
ability of the seasonal temperature is further ex-
amined using RMSE and the temporal correlation
coefficients between the simulated and CRU data
over the 13-yr period. The resulting RMSE (Fig.5)
generally exceeds the interannual variability of the
CRU data (i.e., normalized RMSE>100%), espe-
cially during autumn. In spring and summer clear
overestimation is also revealed. For winter, the
RMSE varies according to models in most regions;
the normalized RMSE for RegCM4, as well as the
multi-model ensembles, is less than 100% while
that for AGCM3 is well above 150% for all sub-re-
gions. As for ENS, it yields the smallest RMSE in
summer and winter due to opposite signs of devia-
tions for different models, but for annual means and
in transient seasons because of mostly underestima-
tion is evident, ENS RMSE is greater than for sepa-
rate models, that are AGCM3 or HaDRM3P having
positive bias.

The spread of bias fields mostly ranges be-
tween —3°C and +3°C, only AGCM3, HaDRM3P
(overestimation), and WRFC (underestimation)
models are slightly exceeding these limits in sum-
mer. WRFC and RCA4 typically show a strong
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cold bias when compared to the CRU observa-
tional dataset. In general, RegCM4 and AGCM3,
having higher initial (before regridding) resolu-
tion, performs among the best climate models: i.e.,
producing close to zero mean annual bias due to
the least biased performance during the period of
March-August. Again, higher resolution simula-
tions (RegCM4, AGCM3) are not expected to de-
crease the mean bias fields, and actually the stan-
dard deviation of bias averaged over the region of
interest in each season is larger in case of RegCM4
and AGCM3 compared to the ensemble (Fig.5).
The wide range of the spread in seasonal biases
can be directly attributed to the different topog-
raphy and parameterizations implemented in the
evaluated climate models simulations.

Overall, models show consistently better skill in
simulating the monthly-mean surface air tempera-
ture in the cold period (September-February) than
for warm period (March-August) of the year (Fig.6).

The model biases also vary systematically ac-
cording to regions. For spring, the most noticeable
systematic biases are the cold bias in the entire
western part including and no systematic warm
bias revealed in this season. For autumn, the most
systematic biases are the cold bias in the central
mountainous regions including Likhi Range and
South Caucasus highlands. In winter warm bias is
evident relative to other seasons and this bias var-
ies closely with orography as shown in Fig.5. This
feature of orography dependence bias is noticeable
during whole year but most evident in winter. The
evaluation of the temporal standard deviation, a
surrogate for the interannual variability, shows that
all models perform reasonably well in simulating
the interannual variability of winter and summer
temperatures for all sub-regions. Most of CMs
overestimate the interannual variability of the
transient season’s temperatures; overestimation is
greatest for RCA4 in spring and AGCM3 in au-
tumn. For all seasons, ensemble simulations have
the least STD.

The correlation coefficients between the simu-
lated and CRU time series (Fig.5) also shows that
climate models examined in this study generally
perform better in simulating the phase of the in-
terannual variation in the surface air temperatures
during winter than in other seasons, the poorest
correlation was found in spring. In contrary with
annual correlations, overview of seasonal means
revealed that AGCM3, the only GCM in this study,
almost not correlated with observation, whilst all
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RCMs has a quite high score as for annual, as well
for seasonal means.

5. Discussion and Conclusion. In the present
study, five climate models have been evaluated
over a 13-yr reference period (1991-2003) against
the CRU observational dataset. Overarching aim
of the present study is to provide useful informa-
tion on general capabilities of given models in
reproducing climatic conditions over the Cauca-
sus Region. By and large, the annual temperature
cycle averaged over the study region is well rep-
resented by ensembles simulation. According to
the spatial distribution of seasonal temperature,
models performing well for annual temperature do
not necessarily perform well in separate seasons
and model performance varies widely and, often
systematically, according to regions and seasons.
These characteristics in model errors make it dif-
ficult to design a set of model weightings that
can be universally applied to the construction of
multi-model ensemble.

According to the findings reported in the pres-
ent work, the following considerations can be
made: (1) there is not a single model outperform-
ing the other ones in all aspects, but it is also im-
portant to note that all models have their strength
and weaknesses; (2) higher resolution simulations
may adequately resolve the temperature variations
in the region; (3) due to the amplification of biases
or the increased internal variability on small scales
induced by strong local surface heterogeneities
within the regional domain, higher resolution sim-
ulations not necessarily reduce the uncertainties;
(4) model performances are also influenced by ob-
servational uncertainties.

We assess that the model can provide useful in-
formation on variables that are important for the as-
sessment of climate change impacts. We therefore
plan to use this model configuration in simulations
of other essential climate variables and construction
future climate scenarios for Caucasus region.
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Appendix:

Fig. 1. Study (Caucasus) domain. The color contours represent the terrain elevation. The numbered boxes
with white boundaries indicate the eight sub-regions in which the area-mean time series are evaluated.

% CRU % GHCN_CAMS

1 ICTP-RegCMa
2 MOHC-HadRM3P

00 3 MRI-AGCM3
: 0.1 0 4 NCAR-WRFC
' § SMHI-RCA4
& ENS
1.3sh
1.20
1,050
0.90 Tea
0,75
0.60
0.45}
0.30
0.15

0.0
&00 0.15 0.30 0. 45

Fig. 2. Evaluation of the simulated temperature climatology over the land using three different reference
datasets. The dots on grey (CRU), yellow (GHCN_CAMS) and squared (ERAINT) backgrounds, respectively,
indicate the model ensemble evaluated against different reference data.
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Fig. 3. Annual-mean surface air temperature (°C) from the CRU (1), GHCN _CAMS (2) and ERAINT (3)
analysis. The biases (°C) from the reference data for (b)—(f) the individual models and (g) the multi-model
ensemble (ENS).
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Fig. 4. Simulated and observed (CRU, thick red) temperature annual cycle (°C) for the eight sub-regions.
The thin yellow line indicates the multi-model ensemble temperature.
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Fig. 5. Regional (a) bias, (b) temporal correlation coefficients, (c) root mean square error and (d) temporal
standard deviation of simulated average seasonal air temperatures relative to CRU observations. Seasons
are defined as follows: winter-DJF (December—February), spring-MAM (March—May), summer-JJA (June—
August) and autumn-SON (September—November). The bias, standard deviation, and RMSE are normalized
by the standard deviation of the CRU data.
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Fig. 6. Standardized deviations and spatial pattern correlations of temperature between the CRU data and
the individual model results for separate seasons over the land surface. Seasons are defined as follows: win-

ter-DJF (December—February), spring-MAM (March—May), summer-JJA (June—August) and autumn-SON
(September—November).

518



T.Davitashvili et al.
Acknowledgements

The research was funded by the Shota Rustaveli
National Scientific Foundation Grant #FR17 548.

We are thankful to our colleagues from Meteo-
rological Research Institute (MRI) of Japan Mete-
orological Agency who provided AGCM3.2 model
outputs that gretly assisted the research.

References

[1] J.Kim, J. E. Lee, Amulti-year regional climate
hindcast for the western U.S. using the Meso-
scale Atmospheric Simulation (MAS) model.
J. Hydrometeorol.4, (2003) 878—890.

[2] G. Lenderink, Exploring metrics of extreme
daily precipitation in a large ensemble of re-
gional climate model simulations. Clim Res.,
44 (2010) 151-166.

[3] J. Overpeck, G. Meehl, S. Bony, D. East-
erling, Climate data challenges in the 21st
century. Science, 331,2011. doi: 10.1126/sci-
encell197869.

[4] A.Dosio, P.Paruolo, Bias correction of the EN-
SEMBLES highresolution climate change pro-
jections for use by impact models: evaluation
on the present climate. J. Geophys Res.,116
2011: D16106. doi:10.1029/2011JD015934.

[5] O. Christensen, M. Drews, J. Christensen., The
HIRHAM regional climate model version 5.
DMI Tech Rep., 22 (2006), 06—17.

[6] J. Christensen, E. Kjellstrom, F. Giorgi, G.
Lenderink,M.Rummukainen, Weight assign-
ment in regional climate models. Clim Res.,44
(2010)179-194.

[7] E. Coppola, F. Giorgi, S. Rauscher, C. Piani,
Model weighting based on mesoscale struc-
tures in precipitation and temperature in an en-
semble of regional climate models. Clim Res.,
44 (2010) 121-134.

[8] T.Krishnamurti, C. Kishtawal, D. Shin, C. Wil-
liford, Multimodelsuperensemble forecasts
for weather and seasonal climate. J.Clim., 13
(2000) 4196-4216.

[9] W. Yoon, L. Stefanova, A. Mitra, T. Vijaya,
V. Kumar, W. Dewar, T. Krishnamurti, A
multi-model superensemble algorithm for
seasonal climate prediction using DEMETER
forecasts. Tellus A. 57 (2005) 280-289. doi: 10
.1111/.1600-0870.2005.00131.

[10] P. Gleckler, K. Taylor, C. Doutriaux, Perfor-
mance metrics for climate models. J.Geophys.
Res., 113 (2008) doi:10.1029/2007JD008972.

Annals of Agrarian Science 18 (2020) 507-520

[11] T. Reichler, J. Kim, Haw well do coupled mod-
els simulate today’s climate? Bull. Am.Meteo-
rol. Soc., 89 (2008) 303-311.

[12] T. Reichler, J. Kim, Uncertainties in the cli-
mate mean state of global observations, re-
analysesandthe GFDL climate model. J.Geo-
phys. Res., 113 (2008):D05106. doi:10.1029/
2007JD009278.

[13] IPCC, Climate change, The science of climate
change. IPCC, WMO, 1995.

[14] IPCC, Climate change, The scientific basis.
IPCC, WMO, 2001 881.

[15] IPCC, Climate change—synthesis report, In-
tergovernmental Panel on Climate Change,
WMO, 2007.

[16] M.Baldauf, A. Seifert, J. Forstner, D. Ma-
jewski, M. Raschendorfer, T. Reinhardt, Op-
erational convective-scale numerical weather
prediction with the COSMO model: descrip-
tion and sensitivities. Mon. W. Rev. (2011):
doi:10.1175/MWR-D-10-05013.

[17] G. Meehl, C. Covey, T. Delworth, R. Stouffer,
M. Latif, B. Mcavaney, J.Mitchell, The WCRP
CMIP3 multi-model dataset: a new era in cli-
mate change research. Bull. Am.Meteorol.
Soc., 88 (2007):1383-1394.

[18] G.Nikulin,C. Jones, P. Samuelsson, F. Giorgi,
M. Sylla, G. Asrar, M. Buchner,R.Cerezo-Mo-
ta, Precipitation climatology in an ensemble of
CORDEX-Africaregional climate simulations.
J.Clim. (2012) doi:10.1174/JCLI-D-11-00375.

[19] M. Mearns, R. Arritt, S. Biner, M. Bukovsky,
S. Mcginnis et al., The North American Re-
gional Climate Change Assessment Program:
overview of phase I results. Bull. Am.Meteo-
rol. Soc. (submitted), (2012).

[20] F. Tapiador, E. Sa'nchez, Changes in the Euro-
pean precipitation climatologies (2070-2100)
as derived by eight regional climate models. J.
Clim.21 (2008) 2540-2557.

[21] F. Tapiador, A joint estimate of the precipita-
tion climate signal in Europe using eight re-
gional models and five observational datasets.
J. Clim, 23 (2010) 1719-1738.

[22] J. T. Houghton,L.. G. Meirafilho, B. A. Cal-
lander, N. Harris, A. Kattenberg, and K. Mas-
kell (Eds.),Climate Change 1995: The Science
of Climate Change. Cambridge University
Press 19962.

[23] J. T. Houghton, Y.Ding,D. J.Griggs,M.Noguer,
P. J. van der Linden, X.Dai, K. Maskell, and C.
A. Johnson (Eds.), Climate Change 2001: The

519



T.Davitashvili et al.

Scientific Basis. Cambridge University Press
2001.

[24] S.Solomon, D. Qin, M. Manning, M. Marquis,
K. Averyt, M. M. B. Tignor, H. L. Miller J, and
Z. Chen (Eds.), Climate Change 2007: The
Physical Science Basis. Cambridge University
Press, 2007.

[25] D. C. Bader, C. Covey, W. J. Gutkowski, I. M.
Held, K. E. Kunkel, R. L. Miller, R. T. Tokma-
kian, and M. H. Zhang, Climate models: An
assessment of strengths and limitations. U.S.
Climate Change Science Program Synthesis
and Assessment Product 3.1, Department of
Energy, Office of Biological and Environmen-
tal Research, 2008, 124.

[26] 1. Harris et al., Updated high-resolution grids
of monthly climatic observations — the CRU
TS3.10 Dataset, 2014. doi:10.1002/joc.3711.

[27] Y. Fan and H. van den Dool,, A global month-
ly land surface air temperature analysis for
1948—present, J. Geophys. Res, 113, (2008),
DO01103, doi:10.1029/2007JD008470.

[28] http://www.ecmwf.int/research.

[29] http://onlinelibrary.wiley.com/doi/10.1002/
qj.828/abstract.

[30] H. W. Barker, A parameterization for comput-
ing grid-averaged solar fluxes for inhomoge-
neous marine boundary layer clouds. Part I:
Methodology and Homogeneous Biases. J. At-
mos. Sci. 53, (1996) 2289— 2303.

[31] S. Bergstrom, L. P. Graham, On the scale prob-
lem in hydrological modelling, J. Hydrology
211 (1998) 253-265.

[32] F. Giorgi, C. Jones, G. Asrar, Addressing cli-
mate information needs at the regional level:
The CORDEX framework. WMO Bull., 58
(2009) 175-181.

[33] K. Thorpe, M. Zwarenstein, A. Oxman, S. Tre-
week, C. Furberget. al., A pragmatic-explana-
tory continuum indicator summary (PRECIS):
a tool to help trial designers J. of Clinical Epi-
demiology 62 (5) (2009), 464-475.

[34] F. Giorgi., On the simulation of regional cli-
mate using a limited area model nested in a
general circulation model, J. Clim, 3 (1990)
941-963.

[35] F. Giorgi and G.T. Bates, On the climatologi-
cal skill of a regional model over complex ter-
rain, Mon. Wea. Rev., 117(1989) 2325-2347.

[36] F. Giorgi, X. Bi and Y. Qian, Y., Direct radia-
tive forcing and regional climatic effects of an-
thropogenic aerosols over East Asia: A region-

520

Annals of Agrarian Science 18 (2020) 507-520

al coupled climate-chemistry/aerosol model
study, J. Geophys. Res. 107 (D20) (2002) 107,
4439.

[37] J. M. Done, G.J. Holland, C.L. Bruye¢re, L.R.
Leung, and A. Suzuki-Parker., Modeling
High-Impact Weather and Climate: Lessons
from a Tropical Cyclone Perspective, Climatic
Change, 2013. doi:10.1007/s10584-013-0954-
6.

[38] C. L. Bruyére, J.M. Done, G.J. Holland, and S.
Fredrick, Bias Corrections of Global Models
for Regional Climate Simulations of High-Im-
pact Weather. Climate Dynamics, 43 (2014)
1847-1856. doi:10.1007/s00382-013-2011-

[39] L. Feng, T. Zhou, B. Wu, T. Li, J. Luo. Projec-
tion of future precipitation change over Chi-
na with a high-resolution global atmospheric
model. Adv. Atmos. Sci., 28 (2) (2011) 464—
476. doi: 10.1007/s00376-010-0016-1;

[40] C. He and T. Zhou., The two interannual vari-
ability modes of the Western North Pacific
Subtropical High simulated by 28 CMIP5-
AMIP models. Clim.Dyn., 43 (2014) 2455—
2469. doi: 10.1007/s00382-014-2068-x.





