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Present study evaluates hindcast over the Caucasus Region of the multi-model system, comprising from 4 ERA-Interim-driven regional 
climate models (RCM) and the high resolution GCM-MRI-AGCM3 of Meteorological Research Institute (MRI). In total, five climate 
models simulations were assessed against the CRU observational database. Present work focuses on the mean surface air temperature. 
The study shows the performance of the members of ensembles in representing the basic spatiotemporal patterns of the climate over 
the territory of Georgia for the period of 1991–2003. Different metrics covering from monthly and seasonal to annual time scales are 
analyzed over the region of interest: spatial patterns of seasonal mean, annual cycle of temperature, as well monthly mean temperature 
bias and inter annual variation. The results confirm the distinct capabilities of climate models in capturing the local features of the 
climatic conditions of the Caucasus Region. This work is in favor to select models with reasonable performance over the study region, 
based on which a high-resolution bias-adjusted climatic database can be established for future risk assessment and impact studies.
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Introduction

Assessing the impacts of the anticipated climate 
variations and change on regionally important sec-
tors is growing in their importance. The primary 
tool for projecting climate are global climate models 
(GCMs) that are typically run at course horizontal 
resolutions, because of their massive computational 
and data storage requirements. GCMs’ output can-
not be directly used for impact study and requires 
downscaling on a finer scale, for which regional cli-
mate models (RCM) are developed. RCM data are 
essential for assessing the impact of climate change 
on different socio-economic sectors.

Climate model evaluation is a fundamental step 
in estimating the uncertainty in future climate pro-
jections. Because of the crucial role of climate mod-
els in this process, it is essential to characterize their 
strengths, weaknesses and uncertainties. Impact as-
sessments typically start with climate data as inputs, 
and involve a series of calculations using multiple 
models through which information propagates hi-
erarchically. Climate model evaluation is used not 
only for model development and improvements 
but also for assessing and correcting model biases. 
Model evaluations are also used to weight individ-
ual models in multi-model ensembles, alleviate the 
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effect of model error on assessment models, and es-
timate the range of uncertainty in projected impacts.

Uncertainties in climate projections come from 
multiple sources including incomplete model for-
mulations, future emissions scenarios, and how 
these are folded together with elements of human 
behavior, technological advancements and social/
government structures. Among these, model errors 
are probably the most viable to characterize, and 
potentially remedy to reduce the uncertainty. Model 
evaluations are typically performed by comparing 
model outputs against reference data from observa-
tions or reanalysis using suitable metrics [1-3], and 
can be further used to guide model improvement 
and/or for bias correction [4]. Measuring model per-
formance objectively is of a particular importance 
in the practice of applying climate model outputs 
to climate change impact assessments which em-
ploys bias correction and/or multi-model ensemble 
[5-9]. Previous studies attempt to identify a single 
parameter representative of overall model perfor-
mance [10-12], that can be applicable to objective 
multi-model ensemble and/or bias correction. Cau-
tion must be exercised in such attempts and ap-
plication of their results, however, because spatial 
and temporal variations in model performance can 
introduce a substantial amount of uncertainties in 
calculating such indices. GCM evaluations have 
been well-established [13-17], but collective and 
systematic evaluation of RCMs is much less mature 
[18-21]. Considering the importance of RCMs in 
studying climate change and assessing its impacts, 
it is critical to apply as much observational scrutiny 
as possible to RCMs.

Systematic multi-model RCM experimentations 
and observation-based evaluations are much less 
mature than those for GCM studies. The long his-
tory of GCM analyses for assessments and other 
climate variability issues has resulted in a mature 
process of model experimentation and evaluation 
[22-25]. Evaluation of the fidelity in simulating 
the present-day climate of multiple GCMs that 
have contributed to the archives of phase 3 of the 
Coupled Model Intercomparison Project (CMIP3) 
used for the Intergovernmental Panel on Climate 
Change (IPCC) Fourth Assessment Report (AR4). 
The CORDEX program was established as the first 
activity of the Task Force on Regional Climate 
Downscaling established by World Climate Re-
search Program (WCRP). Common experimental 
designs in CORDEX are advantageous for many 
practical purposes including model evaluations, un-

certainty assessments, and constructing multi-mod-
el ensemble (ENS).

This study evaluates the 4 RCM and a high res-
olution global model simulations over the Georgia 
using Regional Climate Model Evaluation System 
(RCMES). We include in this research 2 RCMs’ 
(RegCM v 4.7.0 and WRF-ARW v3.9.1.1) simula-
tions over the domain centered to Georgia performed 
by us and 2 simulations over different domains from 
the CORDEX program. Namely RCA4 over MENA 
(Middle East and North Africa) and HadRM3P over 
CAS (central Asian domain). Such a choice has re-
sulted in the fact that only these two domains over-
laps our target area and the evolutionary simula-
tions are available only for these 2 models on ESGF 
(Earth System Grid Federation)-CORDEX archive. 
High resolution GCM - MRI-AGCM3.2 output was 
provided from the Meteorological Research Insti-
tute of Japan Meteorology agency.

Section 1 provides details of the experimental 
design including the evaluation domain, RCMs, ref-
erence datasets, section 2 – climate description of 
Country, section 3 provides details of the Regional 
Climate Model Evaluation System (RCMES) used 
in the model evaluation. Section 4 presents the 
evaluation of RCM skill in simulating the targeted 
variables and examines the uncertainties in model 
evaluation related with reference data. Results are 
summarized in Sect. 5.

Main part

1. Data. In this paper, we used several data ar-
chives, most of them are available from the federa-
tive ESGF infrastructure, including Coordinated Re-
gional climate Downscaling Experiment (CORDEX). 
We downloaded CORDEX simulations over central 
Asia (CAS) and the Middle East and North Africa 
(MENA) domains, covering South Caucasus territory.

Hindcast from the high-resolution atmospher-
ic general circulation model of the Meteorological 
Research Institute (MRI) and two our simulations 
from two regional models RegCM4 and WRF with 
different configuration over the same domain (cen-
tered to South Caucasus territory) and with the same 
resolution have also been evaluated.

As for observations, we used global gridded obser-
vations and reanalysis of 2-meter air temperature data.

1.1. Observational data. For validation of indi-
vidual models, also for ensemble the gridded global 
data set of the Climate Research Unit (CRU) was 
used. The monthly CRU data represent one of the 
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most comprehensive observational data sets avail-
able and have been widely used for former studies. 
These observational data sets are based on statis-
tical interpolation methods, which are  a gridded 
time-series dataset. We used latest version TS 4.03, 
released 15 May 2019, covering the period 1901-
2018 Coverage: All land areas (excluding Antarcti-
ca) at 0.5° resolution for six Variables [26].

Despite the existing studies reveals that there are 
clear biases between the observed surface air tem-
perature and the (GHCN + CAMS) data sets, they 
vary in space and seasons. We decide to compare 
this two gridded temperature dataset over Georgia. 
This data set at 0.5 X 0.5 latitude-longitude resolu-
tion is different from some existing surface air tem-
perature data sets in: (1) using a combination of two 
large individual data sets of station observations 
collected from the Global Historical Climatology 
Network version 2 and the Climate Anomaly Moni-
toring System (GHCN + CAMS) [27].

1.2. Reanalysis data. As all Regional climate 
models are forced with ERA-Interim - reanalysis 
of the global atmosphere dataset, compatibility be-
tween reanalysis and observations (CRU) was also 
established.

The main objectives of the ERA-Interim project 
were to improve on certain key aspects of ERA-
40 (previous version of ERA-Interim), such as the 
representation of the hydrological cycle, the quality 
of the stratospheric circulation, and the handling of 
biases and changes in the observing system. These 
objectives have been largely achieved as a result 
of combination of factors, including many model 
improvements, the use of 4-dimensional variation 
analysis, a revised humidity analysis, the use of 
variation bias correction for satellite data and other 
improvements in data handling.

The ERA-Interim atmospheric model and reanal-
ysis system uses cycle 31r2 of ECMWF’s Integrat-
ed Forecast System (IFS), configured for the spatial 
resolution - T255 spherical-harmonic representation 
for the basic dynamical fields and a reduced Gauss-
ian grid with approximately uniform 79 km spacing 
for surface and other grid-point fields [28-29].

2. Climate models used in the study. Regional 
climate models (RCMs) are useful tools for the pro-
jection of climate change on regional scales. Unlike 
GCMs, the model domain of an RCM does not cov-
er the entire globe. It is restricted to a certain area of 
regional scale.

This restriction allows for long-term simulations 
with higher resolutions. On the other hand, this im-

plies that information about the lateral and lower 
boundary conditions (LBCs) has to be provided. 
These LBCs can be derived from GCM simulations 
or from observational data sets (usually reanalysis 
products).

RCA4. Since 1997 the Rossby Centre has devel-
oped an international standing in the field of region-
al climate modelling with the development of the 
atmospheric model RCA, at SMHI. 

RCA is based upon the numerical weather pre-
diction (NWP) model HIRLAM. The RCA4 dy-
namical core is a two time‐level, semi‐Lagrangian, 
semi‐implicit scheme with six‐order horizontal 
diffusion applied to the prognostic variables. Grid 
boxes in RCA4 can include fractions of sea (with 
fractional ice cover) or lake (with ice or not) and 
land. The land fraction can be further subdivided 
into forest and open land, where both can be partly 
snow covered. Each sub-grid scale tile has a sepa-
rate energy balance equation and individual prog-
nostic surface temperatures. 

The model was driven by European Centre for Me-
dium-Range Weather Forecasts (ECMWF) ERA-In-
terim reanalysis data to run the CORDEX Evaluation 
experiment, representative of the period from 1981 to 
2010, over the Middle East and North Africa (MENA) 
domain called CORDEX-MENA [30-31].

HadRM3P is Hadley’s Regional limited-area re-
gional climate model widely used worldwide as part 
of the PRECIS (Providing Regional Climates for 
Impacts Studies) system, which was developed at 
the Hadley Centre of the United Kingdom Met Of-
fice. HadAM3P is a grid‐point model which solves 
equations of motion, radiative transfer and dynam-
ics explicitly on the same scale as the grid. The at-
mospheric equations are a quasi‐hydrostatic version 
of the primitive equations with full representation 
of the Coriolis force. Other, mostly thermodynamic, 
processes that occur at the sub-grid‐scale are rep-
resented by physical parametrizations. Model has 
0.44 x 0.44 degrees’ resolution with a rotated pole 
to achieve approx. 50 km x 50 km resolution on 19 
levels (used for the EU region, South Asia, planned 
for East Asia). Also used is a double resolution vari-
ant at 0.22 x 0.22 degrees (Western US, planned for 
EU and Africa).  

The model was driven by European Centre for 
Medium-Range Weather Forecasts (ECMWF) 
ERA-Interim reanalysis data to run the CORDEX 
Evaluation experiment, representative of the period 
from 1990 to 2011, over Central Asia domain with 
0.44-degree resolution (CAS-44 domain) [32, 33].
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RegCM v 4.7.0. Regional Climate Model ver-
sion 4 - RegCM model is limited-area regional 
climate model. It uses the radiation scheme of the 
NCAR CCM3, the cloud scattering and absorp-
tion parameterization follow that of Slingo (1989), 
whereby the optical properties of the cloud droplets 
(extinction optical depth, single scattering albedo, 
and asymmetry parameter) are expressed in terms 
of the cloud liquid water content and an effective 
droplet radius. The soil hydrology calculations in-
clude predictive equations for the water content of 
the soil layers.

Compared to previous versions, RegCM4 in-
cludes new land surface, planetary boundary layer, 
and air-sea flux schemes, a mixed convection and 
tropical band configuration, modifications to the 
pre-existing radiative transfer and boundary lay-
er schemes, and a full upgrade of the model code 
towards improved flexibility, portability and user 
friendliness. The model can be interactively coupled 
to a 1D lake model, a simplified aerosol scheme 
(including organic carbon, black carbon, SO4, dust 
and sea spray) and a gas phase chemistry module 
(CBM-Z) [34-36].

WRF-ARW v3.9.1.1 - Weather Research and 
forecasting model (Grell scheme). The WRF mod-
el is a state-of-the-art, next-generation mesoscale 
numerical weather prediction system designed to 
serve both operational forecasting and atmospher-
ic research needs (http://www.wrf-model.org). It 
is a non-hydrostatic model, with several available 
dynamic cores as well as many different choices 
for physical parameterizations suitable for a broad 
spectrum of applications across scales ranging from 
meters to thousands of kilometers. The physics 
package includes microphysics, cumulus param-
eterization, planetary boundary layer (PBL), land 
surface models (LSM), longwave and shortwave 
radiation. 

The WRF model is a state-of-the-art, next-gen-
eration mesoscale numerical weather prediction 
system designed to serve both operational forecast-
ing and atmospheric research needs (http://www.
wrf-model.org). It is a non-hydrostatic model, with 
several available dynamic cores as well as many 
different choices for physical parameterizations 
suitable for a broad spectrum of applications across 
scales ranging from meters to thousands of kilo-
meters. The dynamic cores in WRF include a fully 
mass- and scalar-conserving flux form mass coor-
dinate version. The soil scheme solves the thermal 
diffusivity equation using five soil layers and the en-

ergy budget includes radiation, sensible, and latent 
heat fluxes. It treats the snow-cover, soil moisture as 
fixed quantities with a land use and season-depen-
dent constant value. The terrain, land use and soil 
data are interpolated to the model grids from USGS 
global elevation, 24 category USGS vegetation data 
and 17 category FAO soil data with suitable spa-
tial resolution (arc 5 minutes) to define the lower 
boundary conditions [37-38].  

MRI-AGCM3. A new version of the atmospher-
ic general circulation model of the Meteorological 
Research Institute (MRI), with a horizontal grid size 
of about 20 km, has been developed. The previous 
version of the 20-km model, MRIAGCM3, which 
was developed from an operational numerical 
weather-prediction model, provided information on 
possible climate change induced by global warm-
ing, including future changes in tropical cyclones, 
the East Asian monsoon, extreme events, and block-
ings. For the new version, MRI-AGCM3.2, various 
new parameterization schemes have been intro-
duced that improve the model climate. Using the 
new model, a present-day climate experiment has 
been performed using observed sea surface tempera-
ture. The model shows improvements in simulating 
heavy monthly-mean precipitation around the tropi-
cal Western Pacific, the global distribution of tropical 
cyclones, the seasonal march of East Asian summer 
monsoon, and blockings in the Pacific [39, 40].

2. Country climatology. Georgia’s location on 
the northern edge of the subtropical zone between 
the Black and Caspian seas, on the one hand and on 
the other hand, complexity of its special topography 
determines the variety of climate conditions. Local 
climate creates Black Sea and the Caucasus. The 
last protects Georgia from direct invasion of cold 
air masses from the North and the Black Sea makes 
moderate temperature fluctuations and contributes 
large amount of precipitation, especially in western 
Country. Very important is the Likhi Range, running 
from the North to the South and dividing the Coun-
try into its eastern and western parts, with quite dif-
ferent climatic pictures.

Temperature regime of the territory, as a climate 
in whole, is characterized by a range of peculiar-
ities stipulated mainly by the geographic location 
of Georgia, complex relief of the occupied terri-
tory, radiation pattern and prevailing atmospheric 
circulation processes. As orography on the territory 
varies from 0÷5068 m correspondently mean annu-
al temperature fluctuate in the range of -5, +150C 
approximately.  
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Due to the Country climate regime, territory was 
divided in 8 sub-regions to examine the simulation 
performance across the experiments on different 
sub-regions. These regions mostly cover Georgia’s 
territory but also include some other parts, according 
to the factors of local climate formation. On Fig.1. 
location and names of sub-regions are presented, 
where R01, R02 and R03 are, respectively, West-
ern, Central and Eastern parts of Greater Caucasus 
mountains, R04 - Kolkheti Lowlands, R05 - Central 
part of Georgia including Likhi range, R06 – Adja-
ra Black Sea coastal zone with adjacent mountains, 
R07 - Lesser Caucasus mountains, R07 - Eastern 
Country plane territory.

3. The Regional Climate Model Evaluation 
System (RCMES). RCMES is an open, public-
ly accessible process enabled by leveraging the 
Apache Software Foundation’s OSS library, Apache 
Open Climate Workbench (OCW). RCMES pro-
vides datasets and tools to assess the quantitative 
strengths and weakness of climate models, typically 
under present climate conditions for which we have 
observations for comparison, which then forms a 
basis to quantify our understanding of model uncer-
tainties in future projections. 

RCMES is composed of two main components, 
the Regional Climate Model Evaluation Database 
(RCMED) and the Regional Climate Model Eval-
uation Toolkit (RCMET). RCMED can reside on 
a single server or be distributed on multiple serv-
ers to allow efficient data management and sharing 
while reducing the hardware and software burdens 

for handling the data storage and traffic. Observed 
data are fundamental to model evaluation. The de-
mands from higher resolution and multivariate eval-
uation make the scientific and logistical process of 
model evaluation ever more challenging. RCMED 
bringing together massive amounts of observational 
and model data, but also dealing with the wide va-
riety of sources and formats of data, necessitating 
significant investments in computer and personnel 
resources to transfer, decode, (re)format, (re)ar-
chive, and analyze the data. Such steps can make 
the process of performing robust model evaluations 
extremely difficult and time consuming even for 
highly trained scientists.

RCMET includes a software suite for calculating 
statistical metrics popularly used in model evalua-
tions and visualizations. Model-evaluation metrics 
and visualization generally vary widely according 
to users and targets; RCMET includes the capability 
to incorporate user-defined metrics as well as path-
ways to extract partially processed data (e.g., both 
model and reference data regridded onto a common 
grid) so that users can do their own specific data 
processing and visualizations.

4. Results. The spatial distribution and annu-
al cycle of mean monthly temperature along with 
the bias averaged over the entire analysis region 
and eight sub-regions (Fig.1), selected to examine 
climate models skills across varied geographical 
landscape are presented in this work. The analysis 
focuses on how the model simulates surface climate 
(temperature) in response to the large-scale forcing 

Table 1. Summary of data used in this study
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Table 1. Summary of data used in this study

Data set/version Time range Resolution References

Observation & reanalysis

CRUvTS 4.03 1901-2018 0.50 X 0.50 Climate Research Unit (CRU)

GHCN + CAMS 1948- to near present 0.50 X 0.50 NOAA/OAR/ESRL PSD

ERA-Interim 1979- to near present 79 km ECMWF

Climate models

SMHI-RCA4 1981-2010 0.220 X 0.220 SMHI/Rossby Centre

HadRM3P 1990-2011 0.440 X 0.440 Met Office

RegCM v 4.7.0 1985-2015 15 km ICTP

WRF-ARWv3.9.1.1 1985-2015 15 km NCAR/NCEP

MRI-AGCM3 1979 -2003 20 km MRI -JMA

2. Country climatology. Georgia’s location on the northern edge of the subtropical zone between 
the Black and Caspian seas, on the one hand and on the other hand, complexity of its special 
topography determines the variety of climate conditions. Local climate creates Black Sea and the 
Caucasus. The last protects Georgia from direct invasion of cold air masses from the North and 
the Black Sea makes moderate temperature fluctuations and contributes large amount of 
precipitation, especially in western Country. Very important is the Likhi Range, running from the 
North to the South and dividing the Country into its eastern and western parts, with quite different 
climatic pictures.
Temperature regime of the territory, as a climate in whole, is characterized by a range of 
peculiarities stipulated mainly by the geographic location of Georgia, complex relief of the 
occupied territory, radiation pattern and prevailing atmospheric circulation processes. As 
orography on the territory varies from 0÷5068 m correspondently mean annual temperature 
fluctuate in the range of -5, +150C approximately.  
Due to the Country climate regime, territory was divided in 8 sub-regions to examine the 
simulation performance across the experiments on different sub-regions. These regions mostly 
cover Georgia’s territory but also include some other parts, according to the factors of local climate 
formation. On Fig.1. location and names of sub-regions are presented, where R01, R02 and R03
are, respectively, Western, Central and Eastern parts of Greater Caucasus mountains, R04 -
Kolkheti Lowlands, R05 - Central part of Georgia including Likhi range, R06 – Adjara Black Sea 
coastal zone with adjacent mountains, R07 - Lesser Caucasus mountains, R07 - Eastern Country 
plane territory.
3. The Regional Climate Model Evaluation System (RCMES). RCMES is an open, publicly 
accessible process enabled by leveraging the Apache Software Foundation's OSS library, Apache 
Open Climate Workbench (OCW). RCMES provides datasets and tools to assess the quantitative 
strengths and weakness of climate models, typically under present climate conditions for which 
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imposed by the ERA-Interim reanalysis and by lo-
cal topographical features. All the analysis present-
ed here is carried out over the interior domain to 
eliminate the buffer zone where the direct effect of 
the lateral boundary conditions is maximum.

4.1. Evaluation metrics. Different metrics have 
been used in order to represent the performance of 
climate models in simulating climatic conditions. Be-
sides computing the mean bias and root mean square 
error (RMSE), the degree of statistical similarity be-
tween two climatic fields was quantified in the form 
of normalized Taylor diagrams that can be considered 
as the combination of different measures such as the 
centered (or bias removed) RMSE, spatial standard 
deviation (STD), and spatial correlation. The Taylor 
diagrams reported in the present study are based on 
13-yr annual and seasonal means in grid points.

4.2. Uncertainties assessment. The accuracy 
of reference data is among the most important con-
cerns in model evaluation. All observations and/or 
analyses include errors of unknown/estimated mag-
nitudes; e.g., analyses based on surface station data 
are directly affected by local station density. This 
especially true for the Caucasus region in which sta-
tion density varies substantially according to regions. 
Uncertainties in model evaluation originating from 
reference data are examined using three different 
reference datasets. In addition to CRU, ERA-Inter-
im (ECMWF Re-Analysis) and the GHCN_CAMS 
(Global Historical Climatology Network v2 and the 
Climate Anomaly Monitoring System) are selected 
for the same period as models evaluation was per-
formed. All CMs yield higher spatial correlations 
with the CRU than GHCN_CAMS and ERA-In-
terim. The standardized deviations and RMSE are 
smaller against CRU and GHCN_CAMS, i.e. the 
spatial variability of the ERA-Interim data is larger 
than other two datasets (Fig.2). 

Fig.3 shows the spatial distribution of mean an-
nual temperature biases averaged over the entire 
13-yr period compared to the CRU, GHCN and ER-
AINT datasets. In all seasons (not shown) the tem-
perature bias against CRU data ranges between -4◦ 

and 4◦C over the most of domain, except in winter 
and for annual means, when the bias mostly ranges 
between -3◦ and 3◦C. Differences between models 
and ERAINT and GHCN_CAMS data range be-
tween -4◦ and 4◦C in summer and for annual biases, 
but in the rest of seasons it is increased up to -6◦ 
and 6◦ C. As for GHCN_CAMS dataset, all models 
deviate from observation in the range -4◦ and 4◦C, 
increasing to -6◦ and 6◦C in winter season.

Best fit was revealed with CRU, biases of mod-
els are the smallest, but there are some systemati-
cally occurred features in the spatial distribution of 
these differences, i.e. relative to CRU and GHCN_
CAMS it is noticeable cold bias over lowlands and 
plain territory and warm bias is the most evident 
in summer and winter over Caucasus. As for ER-
AINT, in contrary, for all simulations cold bias is 
occurred over mountainous areas, especially over 
Greater Caucasus range, warm bias – over low-
lands and plain territory, that is the most evident in 
summer. Although evaluation of models against all 
three observation datasets demonstrates the spa-
tial features of temperature biases and bias pattern 
is comparable with the terrain profile. It must be 
noticed, that moving towards the originally high-
er resolution information, the finer the details are 
in the spatial distribution of the seasonal tempera-
ture fields and the spatial features of deviations of 
mean seasonal temperature fields of ensemble sim-
ulations even reveal the ranges of Likhi Mountains 
(dividing west and east Country), which is in fact 
is especially clearly seen in winter season for all 
simulations.   

The differences between the temperature evalu-
ations based on the three observation datasets, may 
have resulted from the difference in the observa-
tional platform and methodologies. This examina-
tion shows that, quality control and cross-examina-
tion of reference datasets are important for model 
evaluations.

4.3. Evaluation results. In this study the base-
line evaluation of the mean surface air temperature 
is presented against CRU dataset. As it was already 
mentioned, the most noticeable feature is the gen-
eral warm bias over the Greater and Lesser Cau-
casus mountains and cold bias in the lowlands and 
plain territory (Fig.3). The spatial patterns of cold 
biases for all simulations except AGCM3 are sim-
ilar, with the largest magnitudes being located in 
west Georgia lowlands. However, the cold biases 
in the WRFC and RegCM4 simulations are gen-
erally larger and extended over east Georgia plain 
territory. The warm bias is found in all simulations 
except RCA4. RCA4 is an outlier among these 
five CMs in the sense that it generates general cold 
biases over almost the entire study area. Another 
difference between the five simulations is that in 
the HaDRM3P simulation warm biases of more 
than 2°C are largely confined to Greater and Lesser 
Caucasus highlands, reaching its maximum magni-
tude up to 3°C in DJF season, when this warm bias 
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clearly depicted in other three simulations (except 
RCA4) as well. On the contrary, the only GCM 
(AGCM3) (Fig.3) generates overall warm biases. 
Unlike in the AGCM3 simulation, annual bias is 
the smallest (±1°C) but without clear dependence 
on topography, only in winter months there is ev-
ident positive (up to 3°C) deviation area covering 
mountainous part of the Country.

As it seems all RCMs except RCA4, overesti-
mate the surface temperatures over the high eleva-
tion regions and underestimate low elevations re-
sulting the least deviated ENS results regarding to 
observation in the range ±1.5°C.

Overall, all models simulate the spatial varia-
tions in the annual mean temperatures over Geor-
gia with the spatial pattern correlation coefficients 
between 0.95 and 0.99 and standardized deviations 
(the spatial standard deviation of the simulated sur-
face air temperature normalized by that of the ob-
served data) of 0.8–1.15 with respect to the CRU 
data, except WRFC with much lower STD of 0.65 
(Fig.2). Fig.2 also shows that the multi-model en-
semble mean (ENS), along with AGCM3, yield the 
smallest RMSE.   

Comparison of the simulated annual cycle 
against the CRU analysis for the sub-regions shows 
that the multi-model ensemble is generally in well 
agreement with observed climatology in these re-
gions and all five simulations have almost identical 
annual cycle and a similar range in monthly mean 
temperatures averaged over sub-regions, with dif-
ferences up to 5°C between separate models. How-
ever, despite the reasonable performances, model 
biases vary noticeably according to regions and sea-
sons (Fig.4).

Fig.4 shows some time dependency of model 
deviations, as temperature biases are not constant 
in time. They have a more or less clear annu-
al cycle: there is one of five CMs (RCA4) with 
a constant negative temperature bias through the 
entire year, for other four models temperature is 
generally overestimated in winter (exceeding 4°C 
in January and February), whilst underestimated to 
a varying extent in the rest of the year resulting 
ensemble simulations negative bias. Therefore, the 
seasonal variation in the magnitude of the bias in 
area-average temperature means that the ENS sim-
ulation has a less extreme annual cycle than the 
annual cycle of the observations. In the transient 
seasons (spring, autumn), all regions of the study 
territory have a cold bias. This appears to be larg-
est over the west Georgia lowlands. Warm bias in 

area-mean temperature is greatest during winter. In 
this season, warm biases extend over entire moun-
tainous regions including the Greater and Lesser 
Caucasus. This may be related to the simulation 
of cold-season snowpack in the high-elevation re-
gions and/or the lack of resolutions both in model 
simulations and the CRU data, suitable for repre-
senting the large orographic variations and associ-
ated variations in surface temperature in the moun-
tainous region.

Fig.5 presents the normalized biases and in-
terannual variability in terms of the percentage of 
the temporal standard deviations of the CRU data 
over the 13-yr period, of the simulated surface air 
temperatures in the eight sub-regions during each 
season. The temporal standard variations are ad-
opted as the measure of the interannual variabili-
ty. The scaled model bias shows that the warm bias 
over the Caucasus mountains is common for nearly 
all models (except RCA4) only in winter; RCA4, 
which generates quite strong (by 50%–150% of the 
observed interannual variability) cold biases over 
the region in winter, is the only exception. As for 
cold bias on the intermountain low elevation area 
negative bias is systematic regardless of models and 
seasons for west Georgia and more evident in tran-
sient seasons for east Country plains.

Models skill in simulating the interannual vari-
ability of the seasonal temperature is further ex-
amined using RMSE and the temporal correlation 
coefficients between the simulated and CRU data 
over the 13-yr period. The resulting RMSE (Fig.5) 
generally exceeds the interannual variability of the 
CRU data (i.e., normalized RMSE>100%), espe-
cially during autumn. In spring and summer clear 
overestimation is also revealed. For winter, the 
RMSE varies according to models in most regions; 
the normalized RMSE for RegCM4, as well as the 
multi-model ensembles, is less than 100% while 
that for AGCM3 is well above 150% for all sub-re-
gions. As for ENS, it yields the smallest RMSE in 
summer and winter due to opposite signs of devia-
tions for different models, but for annual means and 
in transient seasons because of mostly underestima-
tion is evident, ENS RMSE is greater than for sepa-
rate models, that are AGCM3 or HaDRM3P having 
positive bias.

The spread of bias fields mostly ranges be-
tween –3°C and +3°C, only AGCM3, HaDRM3P 
(overestimation), and WRFC (underestimation) 
models are slightly exceeding these limits in sum-
mer. WRFC and RCA4 typically show a strong 
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cold bias when compared to the CRU observa-
tional dataset. In general, RegCM4 and AGCM3, 
having higher initial (before regridding) resolu-
tion, performs among the best climate models: i.e., 
producing close to zero mean annual bias due to 
the least biased performance during the period of 
March-August. Again, higher resolution simula-
tions (RegCM4, AGCM3) are not expected to de-
crease the mean bias fields, and actually the stan-
dard deviation of bias averaged over the region of 
interest in each season is larger in case of RegCM4 
and AGCM3 compared to the ensemble (Fig.5). 
The wide range of the spread in seasonal biases 
can be directly attributed to the different topog-
raphy and parameterizations implemented in the 
evaluated climate models simulations.

Overall, models show consistently better skill in 
simulating the monthly-mean surface air tempera-
ture in the cold period (September-February) than 
for warm period (March-August) of the year (Fig.6).

The model biases also vary systematically ac-
cording to regions. For spring, the most noticeable 
systematic biases are the cold bias in the entire 
western part including and no systematic warm 
bias revealed in this season. For autumn, the most 
systematic biases are the cold bias in the central 
mountainous regions including Likhi Range and 
South Caucasus highlands. In winter warm bias is 
evident relative to other seasons and this bias var-
ies closely with orography as shown in Fig.5. This 
feature of orography dependence bias is noticeable 
during whole year but most evident in winter. The 
evaluation of the temporal standard deviation, a 
surrogate for the interannual variability, shows that 
all models perform reasonably well in simulating 
the interannual variability of winter and summer 
temperatures for all sub-regions. Most of CMs 
overestimate the interannual variability of the 
transient season’s temperatures; overestimation is 
greatest for RCA4 in spring and AGCM3 in au-
tumn. For all seasons, ensemble simulations have 
the least STD.

The correlation coefficients between the simu-
lated and CRU time series (Fig.5) also shows that 
climate models examined in this study generally 
perform better in simulating the phase of the in-
terannual variation in the surface air temperatures 
during winter than in other seasons, the poorest 
correlation was found in spring. In contrary with 
annual correlations, overview of seasonal means 
revealed that AGCM3, the only GCM in this study, 
almost not correlated with observation, whilst all 

RCMs has a quite high score as for annual, as well 
for seasonal means.

5. Discussion and Conclusion. In the present 
study, five climate models have been evaluated 
over a 13-yr reference period (1991−2003) against 
the CRU observational dataset. Overarching aim 
of the present study is to provide useful informa-
tion on general capabilities of given models in 
reproducing climatic conditions over the Cauca-
sus Region. By and large, the annual temperature 
cycle averaged over the study region is well rep-
resented by ensembles simulation. According to 
the spatial distribution of seasonal temperature, 
models performing well for annual temperature do 
not necessarily perform well in separate seasons 
and model performance varies widely and, often 
systematically, according to regions and seasons. 
These characteristics in model errors make it dif-
ficult to design a set of model weightings that 
can be universally applied to the construction of 
multi-model ensemble. 

According to the findings reported in the pres-
ent work, the following considerations can be 
made: (1) there is not a single model outperform-
ing the other ones in all aspects, but it is also im-
portant to note that all models have their strength 
and weaknesses; (2) higher resolution simulations 
may adequately resolve the temperature variations 
in the region; (3) due to the amplification of biases 
or the increased internal variability on small scales 
induced by strong local surface heterogeneities 
within the regional domain, higher resolution sim-
ulations not necessarily reduce the uncertainties; 
(4) model performances are also influenced by ob-
servational uncertainties. 

We assess that the model can provide useful in-
formation on variables that are important for the as-
sessment of climate change impacts. We therefore 
plan to use this model configuration in simulations 
of other essential climate variables and construction 
future climate scenarios for Caucasus region.
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Fig. 2. Evaluation of the simulated temperature climatology over the land using three different reference 
datasets. The dots on grey (CRU), yellow (GHCN_CAMS) and squared (ERAINT) backgrounds, respectively, 

indicate the model ensemble evaluated against different reference data.
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13 
 

Fig.3. Annual-mean surface air temperature (°C) from the CRU (1), GHCN_CAMS (2) and 
ERAINT (3) analysis. The biases (°C) from the reference data for (b)–(f) the individual models 
and (g) the multi-model ensemble (ENS).

Fig.4. Simulated and observed (CRU, thick red) temperature annual cycle (°C) for the eight sub-
regions. The thin yellow line indicates the multi-model ensemble temperature.

Fig.5. Regional (a) bias, (b) temporal correlation coefficients, (c) root mean square error and (d) 
temporal standard deviation of simulated average seasonal air temperatures relative to CRU 
observations. Seasons are defined as follows: winter-DJF (December–February), spring-MAM 
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Fig. 4. Simulated and observed (CRU, thick red) temperature annual cycle (°C) for the eight sub-regions. 
The thin yellow line indicates the multi-model ensemble temperature.

Fig. 5. Regional (a) bias, (b) temporal correlation coefficients, (c) root mean square error and (d) temporal 
standard deviation of simulated average seasonal air temperatures relative to CRU observations. Seasons 

are defined as follows: winter-DJF (December–February), spring-MAM (March–May), summer-JJA (June–
August) and autumn-SON (September–November). The bias, standard deviation, and RMSE are normalized 

by the standard deviation of the CRU data.

Annals of Agrarian Science 18 (2020) 507–520T.Davitashvili et al.



518

14 
 

(March–May), summer-JJA (June–August) and autumn-SON (September–November). The bias, 
standard deviation, and RMSE are normalized by the standard deviation of the CRU data.

 

Fig. 6. Standardized deviations and spatial pattern correlations of temperature between the CRU data and 
the individual model results for separate seasons over the land surface. Seasons are defined as follows: win-
ter-DJF (December–February), spring-MAM (March–May), summer-JJA (June–August) and autumn-SON 

(September–November).
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