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Vibrational  transportation-technologic  (VTT)  process  is  a  dynamically  sensitive  process,  in  which  many  physically  different  
components  are  involved:  vibrodrive,  elastic  system,  working  member  (absolutely  or  finitely  rigid),  various  grainy  loads.  The  
interactions  of  those  components  define  the  behavior  of  grainy  material  on  the  surface  of  working  member.  As  a  main  defining  
factor  of  the  accuracy  of  the  process,  precise  transmission  of  vibration  to  the  working  member  is  of  particular  importance.  In  
the  manuscript,  the  special  dynamical  model  of  the  VTT  system  and  corresponding  mathematical  model  of  the  VTT  process  
are  presented,  where  the  movement  of  grainy  material  is  described  under  the  conditions  of  spatial  vibration  of  the  working  
member,  which  is  caused  by  possible  errors  in  the  manufacture  and  assembly  of  the  vibration  machine.  Mathematical  modeling  
has  been  carried  out  under  continuous  operating  conditions  (amplitude,  frequency)  of  electromagnetic  resonance  vibrofeeder,  
when  simultaneously  alternating  amplification  of  separate  non-working  spatial  vibration  and  revelation  of  its  impact  on  the  
process  takes  place.  The  results  of  modeling  in  the  form  of  graphs  and  the  influence  of  non-working  vibrations  on  the  law  
of  the  material  displacement  are  presented  in  the  manuscript.
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1. Introduction

Vibrational  transportation-technologic  (VTT)  
machines  are  widely  used  in  many  fields  of  
manufacturing  in  the  world  for  vibrational  pro-
cessing  and  transportation  of  different  kinds  of  
materials  [1-11].

VTT  machines  (drawing.1c)  are  used  in  con-
struction,  mining,  agriculture,  chemical  and  con-
fectionery  manufactures  and  others,  therefore,  
the  dimensions  of  machines  vary,  as  well  as  
their  power,  shapes  of  working  member  and  
types  of  vibro-drive  and  elastic  systems.

VTT  process  is  a  dynamically  sensitive  one,  
in  which  many  physically  different  components  
are  involved:  vibro-drive,  elastic  system,  work-
ing  member  (absolutely  or  finitely  rigid),  various  
grainy  loads  [10,  12-17].  The  interactions  of  
those  components  define  the  behaviour  of  grainy  

material  on  the  surface  of  working  member.
Due  to  various  construction,  installation  or  

manufacturing  errors  in  spring  vibrating  ma-
chines  [12,  17],  Also,  due  to  the  specificity  of  
the  springs,  there  is  a  deviation  of  the  excitation  
force  from  the  calculating  direction.  As  a  result,  
spatial  oscillations  occur  along  with  the  operat-
ing  oscillations  of  the  working  member  [17-19],  
which,  in  the  case  of  amplification  (e.g.,  under  
resonance  conditions),  can  have  a  significant  
impact  on  the  vibrational  displacement  pattern  
of  loose  material.

Based  on  the  above,  it  is  advisable  to  devel-
op  a  generalized  (spatial)  mathematical  model  
of  a  loaded  vibrational  technological  machine,  
where  the  possible  cinematic  and  dynamic  con-
nections  and  interactions  between  the  constituent  
components  will  be  reflected.  Such  an  approach  
will  allow  us  to  investigate  through  modeling  
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the  influence  of  a  wide  range  of  parameters  on  
the  regularity  of  movement  of  material  (techno-
logical  load).

2. Spatial  dynamical  model  of  vibrational  
displacement  of  grainy  material

A  spatial  dynamical  model  of  vibrational  
transportation  of  grainy  material  has  been  de-
veloped  to  investigate  this  problem  (Fig.  1).  A  
three-mass  (vibro  exciter  –  working  member  –  
grainy  load)  dynamical  model  of  the  vibro-feed-
er  is  shown  in  the  figure,  where  the  following  
assumptions  are  adopted:
•	 Working  member,  as  an  asymmetrical  rigid  

body,  performs  spatial  (rotational-linear)  vi-
brational  motion;

•	 Grainy  material  is  considered  as  a  solid  
body,  which  will  be  equipped  with  con-
ditional  elastic-damping  elements,  which  
characterize  (describe)  the  rheological  prop-
erties  of  grainy  material;

•	 The  movement  of  grainy  load  is  considered  
in  three  linear  directions;

•	 The  third  mass  -  vibroexciter  is  considered  
immobile  ,  from  which  the  vibration  is  
transmitted  to  the  working  member  in  a  
single  direction;

•	 The  excitation  force  is  not  transmitted  
precisely  to  the  center  of  gravity  of  the  
working  member,  but  is  missed  due  to  
various  permissible  structural  and  physical  
inaccuracies  [5,  19],  which  generates  force  
projections  and  moments  towards  the  center  
of  gravity.

The  working  member  (O1x1y1z1)  with  elastic  
system  1  (fig.  1a)  from  one  side  is  connected  
to  vibroexciter  (O2x2y2z2)  and  from  other  side  
–  to  the  material  to  be  displaced  (O2x3y3z3)  with  
one-sided  connection  2.  Free  point  Ai    of  the  
working  member  is  vectorially  connected  to  the  
vibratory  exciter  and  its  own  center  of  gravity  
(O1),  just  as  the  point  of  the  material  is  con-
nected  to  the  O1  and  O3  points  (such  connection  
of  the  points  Ai  and  Bi  are  used  to  obtain  the  
mathematical  model  (9)  of  spatial  motion  of  the  
system  [11,  17].

Fig.  1c    shows  an  analog  of  dynamical  mod-
el  (fig.1  a)  –  vibratory  feeder  with  vibratory  
exciter  and  grainy  material.

The  grainy  material  (M3)  model  (Fig.2)  is  
a  cube-shaped  body,  in  which  the  whole  mass  
is  concentrated    and  equipped  with  conditional  
elastic-damping  elements  (kx,    ky,      kz,      k,      
k,      k)  unbound  from  one  side  (from  the  side  
of  the  working  member  surface).

They  describe  the  properties  of  a  particular  
material  and  vary  depending  on  the  working  
mode  of  the  vibratory  machine  (moving  along  
the  surface  of  the  working  body  or  separately).

Presentation  of  grainy  material  in  such  a  way  
on  the  one  hand  allows  us  to  include  it  in  the  
overall  oscillation  system  (Fig.  1  a),  as  a  solid  
body  (describe  spatial  motion),  and  on  the  other  
hand describe  its  deformation  (rheological)  prop-
erties  with  elastic  elements.

The  rotational  motions  of  each  mass  of  the  
system  are  described  in  Euler  angles  (Fig.  1  b),  
for  both  towards  its  own  center  and  from  one  
mass  towards  another.
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FFiigg..  11.. The dynamical model of vibratory technological machine: a) three mass spatial model, 
b) rotational motion, c) physical analogue of the model 

                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Fig. 1. The dynamical model of vibratory technological machine: a) three mass spatial model, b) rotational 
motion, c) physical analogue of the model
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3.  Friction  force  between  the  working  
member  (m1)  and  the  surfaces  of  the  
material  (m3)

The  problems  of  the  friction  force  between  
the  working  member  and  the  material  to  be  
displaced  are  studied  for  piece  details  in  detail  
and  substantially    [1-3,  20].  They  examine  the  
typical  forms  of  frequently  used  parts  (rectan-
gular,  spherical,  cylindrical,  etc.),  as  well  as  po-
lyhedral  parts  with  rolling  properties  for  which  
the  friction  force  is  only  present  at  the  points  
of  contact  of  the  working  member  and  the  load.

Unlike  singled  out  ”hard“  materials,  for  grai-
ny  materials,  there  is  no  definite  boundary  of  
point  of  contact.  This  view  stems  from  the  fact  
that  for  dispersive  (grainy)  materials  the  detach-
ment  from  the  surface  or  attachment  to  it  does  
not  happen  instantaneously,  but  along  with  tran-
sitional  elastic-damping  process.  To  describe  the  
friction  force  between  the  working  member  and  
grainy  material,  different  approaches  are  used  
[21-25],  the  essence  of  which  lies  in  that  the  re-
action  of  the  load  on  the  working  member  rep-
resents  the  function  of  load  movement  and  ve-
locity;  At  the  same  time,  the  internal  resistance  
of  the  material,  as  well  as  the  resistance  of  the  
environment  in  which  the  movement  takes  place  
(air,  liquid,  etc.)  is  taken  into  account.

where  q  takes  the  values:  x1,3,  y1,3,  z1,3,  and  the  
friction  force  will  be

When  considering  the  spatial  (rectilinear  or  
rotational)  motion  of  a  technological  load,  in  
addition  to  the  normal  reaction,  as  a  result,  
moments  of  those  forces  arise  on  this  or  that  
surface  of  the  working  member  (Fig.  3):

Where  fq  is  the  friction  coefficient  be-
tween    the  load  and  the  working  body  (fq  
is  normally  obtained  in  each  cycle  of  the  
variable  motion  depending  on  the  dynamical  
condition  of  the  load  –  sliding  on  the  sur-
face,  stoppage,  etc.);  qr   is  the  distance  from  
friction  surface  to  the  center  of  gravity  of  
the  load  along  the  coordinates.

The  components  of  the  friction  force  can  
be  expressed  as  follows:
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Fig. 3. To determine the friction forces and 
moments affecting the grainy load

Fig. 2. The spatial model of grainy material
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where  zy rr ,   are  the  distances  from  friction  surface  3333 zyxO to  the  system  axes.  The  

friction  force  moments  towards  the  system  (working  member)  1111 zyxO are  expressed  as  
follows: 
                                                                                                                                                                                                                                                                                                                                                           
 

                (𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑥𝑥𝑥𝑥1 = (𝐹𝐹𝐹𝐹𝑧𝑧𝑧𝑧3ℎ𝑦𝑦𝑦𝑦 − 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦3ℎ𝑧𝑧𝑧𝑧) 
 

                                  (𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑦𝑦𝑦𝑦1 = 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥3ℎℎ𝑧𝑧𝑧𝑧);                                     (5)                 
 

(𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑧𝑧𝑧𝑧1 = 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥3ℎℎℎℎ𝑦𝑦𝑦𝑦); 
 
where  zy hh ,   are  the  distances  from  the  friction  surface  1111 zyxO   to  the  system  axes. 
In  the  given  example,  working  member  is  bound  from  two  sides  with  the  planes:  

111 yxO ,    111 xzO ,  whereas  in  the  direction  of  11 xO it  is  open;  in  this  case,  on  111 zyO
surface  the  friction  force  is  not  present,  and  therefore,  rx,  hx  multiplier  members  in  (4),  
(5)  expressions  equal  to  zero. 

 
  

44..    TThhee    eexxcciittaattiioonn    ffoorrccee 
                                                   

In  a  real  machine,  as  a  result  of  initial  errors,  the  excitation  force  may  not  be  exactly  
in  the  center  of  gravity,  but  be  moved  with  eccentricities  ex,  ey,  ez  (which  was  mention  
above  as  well);  Besides,  when  the  mass  M1  is  dynamically  affected,  the  mass  deviates  
with  respect  to  the  external  (excitation)  force  by  111 ,, zyx coordinates  at  the  expense  of  
deformation  of  the  elastic  system. 
As  an  illustration,  on  Fig.4,  the  condition  of  M1  mass  is  shown  before  and  after  the  
engagement  of  excitation  Q(t)  force;  M1  mass  is  shown  in  two  different  conditions  –  I,  
II;  I  corresponds  to  the  initial  condition,  when  Q(t)  direction  coincides  the  direction  of  
non-elastic  spring  axis  and  passes  on  the  center  of  gravity  OO1  of  M1;  II  corresponds  
to  the  real  condition  of  M1  mass,  i.e.  considering  the  deviations  caused  by  tolerances  
on  the  machine  manufacturing  and  installation  [3,  5,  23,  26, 27].  The  deviations,  which  
are  characterized  with  corners  and  eccentricities  represent  the  reason  of  generation  of  
friction  forces,  which,  along  with  bending  deformations  of  the  spring  1,  cause  the  
vibration  of  mass  M1  in  space. 
The  projections  of  force  Q  on  the  axes  of  coordinate  system    1111 zyxO   will  be  expressed  
as  follows: 
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𝑄𝑄𝑄𝑄𝑥𝑥𝑥𝑥1 = 𝑄𝑄𝑄𝑄[(𝜓𝜓𝜓𝜓1 − 𝜓𝜓𝜓𝜓2    )𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1];   

                                                     𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦1 = 𝑄𝑄𝑄𝑄[𝜑𝜑𝜑𝜑2 − 𝜑𝜑𝜑𝜑1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠1 −𝜃𝜃𝜃𝜃1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1];     (6)  

                                                                                𝑄𝑄𝑄𝑄𝑧𝑧𝑧𝑧1 = 𝑄𝑄𝑄𝑄[(𝜓𝜓𝜓𝜓1 +𝜓𝜓𝜓𝜓2 )𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1)];   

 

 

  
  
  
  
  
  
  
  
  
  
  
  
  

FFiigg..  44.. The position of the working member before and after the engagement of the force 
                                                                                                                                                              
The      moments  of  Q force  are  defined  by  the  formulas  of  vector  algebra  theory  [6];  If  
we  define  point  N  ,  on  which  Q force  vector  passes,  then  the  moment  of  this  vector  
towards  1111 zyxO coordinate  system  axes  will  be  as  follows: 

𝑀𝑀𝑀𝑀𝑋𝑋𝑋𝑋1 = 𝑒𝑒𝑒𝑒𝑌𝑌𝑌𝑌1𝑄𝑄𝑄𝑄𝑍𝑍𝑍𝑍1 − 𝑒𝑒𝑒𝑒𝑍𝑍𝑍𝑍1𝑄𝑄𝑄𝑄𝑌𝑌𝑌𝑌1; 

                  𝑀𝑀𝑀𝑀𝑌𝑌𝑌𝑌1 = 𝑒𝑒𝑒𝑒𝑍𝑍𝑍𝑍1𝑄𝑄𝑄𝑄𝑋𝑋𝑋𝑋1 − 𝑒𝑒𝑒𝑒𝑋𝑋𝑋𝑋1𝑄𝑄𝑄𝑄𝑍𝑍𝑍𝑍1;          (7) 
𝑀𝑀𝑀𝑀𝑍𝑍𝑍𝑍1 = 𝑒𝑒𝑒𝑒𝑋𝑋𝑋𝑋1𝑄𝑄𝑄𝑄𝑌𝑌𝑌𝑌1 − 𝑒𝑒𝑒𝑒𝑌𝑌𝑌𝑌1𝑄𝑄𝑄𝑄𝑋𝑋𝑋𝑋1. 

 
  
55..    MMaatthheemmaattiiccaall    mmooddeell    ooff    ““GGrraaiinnyy    mmaatteerriiaall    ––    wwoorrkkiinngg    mmeemmbbeerr””    ssyysstteemm    ssppaattiiaall    
vviibbrraattoorryy    mmoottiioonn 
 
To  obtain  the  differential  equation  system  of  load’s  spatial  vibratory  movement,  the  
dynamical  model  presented  on  Fig.1  was  considered.  The  systemic  approach  [17]  was  
used,  which  allows  to  fully  describe  they  dynamic  interaction  of  masses. 
To  obtain  the  full  mathematical  picture  of  the  material  and  working  member  interaction,  
we  used  the  classical  theory  [17,  19]  of  relative  (technological  load),  translational  
(working  member)  and  absolute  (technological  load)  motion  of  bodies,  which  corresponds  
to  the  principles  of  vibratory  displacement  of  one  body  in  relation  to  the  other. 
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This  approach  involves  obtaining  vector  equations  of  velocities  of  Ai  and  Bi  free  points  
of  the  masses  (relative,  translational,  absolute)  and  their  expansion  on  the  coordinate  
axes,  then  their  projection  on  the  coordinate  axes  of  the  working  member  using  Euler’s  
angles  [17].  Subsequently,  by  obtaining  the  functions  of  the  total  kinetic  and  potential  
energies  and  resistance,  and  using  the  2nd  order  Lagrange  equation,  we  obtain  the  
differential  equation  of  spatial  motion  (9)  of  each  mass. 
If  we  assume  that  the  reaction  of  the  grainy  load  in  the  equations  of  the  working  
member  (1)  is  equal  to  0  and  also  in  the  left  part  of  the  equations  we  consider  only  
linear  constituents,  then  the  system  of  differential  equations  of  the  spatial  motion  of  
the  working  member  can  vectorically    be  expressed  in  this  way: 
 
  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞

..
𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖

.
+ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗 = 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞𝑄𝑄𝑄𝑄𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡),    (8)                                                                                       

                   
where  iM is  the  mass  of  the  working  member  and  the  moments  of  inertia  during  the  
rectilinear  and  rotational  motion  respectively;  iq   is  the  coordinates  of  spatial  motion:  
x1,  y1,  z1,  θ1, ψ1, ϕ1;      ic   is  the  coefficient  of  resistance  towards  the  axes  of  spatial  
coordinates;  ib ,  id   coefficients  express  the  interdependence  of  linear-spatial  motions;  

jq -  the  corresponding  rotational  motion  of  a  linear  motion  on  different  axes;  qF   -  
the  projection  of  excitation  force  and  moment  on  the  corresponding  axis;  qA -  force  
coefficient  on  the  corresponding  axis. 
As  mentioned,  certain  structural,  physical,  and  other  permissible  errors  occur  during  the  
manufacturing  and  installation  of  the  vibratory  machine  [12,  19],  which  is  why  the  
excitation  force  is  not  transmitted  to  the  center  of  gravity  of  the  working  body  precisely;  
as  a  result,  the  force  constituents  on  the  coordinate  axes  are  obtained,  as  well  as  the  
corresponding  moments  towards  the  center  of  gravity.  Normally,  such  deviations  are  not  
taken  into  account  due  to  their  smallness,  but  in  resonance  machines,  they  can  have  a  
significant  influence  on  the  technological  process. 
After  determining  the  total  kinetic  and  potential  energies  of  the  masses  M1  and  M3  and  
obtaining  the  analytical  expressions  (the  expansion  on  the  coordinate  axes  considering  
Euler’s  angles  [17],  working  member  inclination  and  angles  of  vibrations),  using  the  2nd  
order  Lagrange  equation,  the  system  of  differential  equations  of  material’s  spatial  motion  
is  obtained:         

   
 
𝑚𝑚𝑚𝑚3𝑥𝑥𝑥𝑥

..
3 + 𝑚𝑚𝑚𝑚3[(𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − (𝑧𝑧𝑧𝑧

..
1 + 𝑥𝑥𝑥𝑥

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝜓𝜓𝜓𝜓

..
1𝑧𝑧𝑧𝑧3 − 𝑦𝑦𝑦𝑦

..
1𝜑𝜑𝜑𝜑1 + 2𝜓𝜓𝜓𝜓

.
1𝑧𝑧𝑧𝑧

.
3 − 

−𝜑𝜑𝜑𝜑
..
1𝑦𝑦𝑦𝑦 − 2𝜑𝜑𝜑𝜑

.
1𝑦𝑦𝑦𝑦

.
3] + ℎ𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑧𝑧𝑧𝑧

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑥𝑥𝑥𝑥

.
3 − 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −(𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧 + 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 

𝑚𝑚𝑚𝑚3𝑦𝑦𝑦𝑦
..
3 + 𝑚𝑚𝑚𝑚3[𝑦𝑦𝑦𝑦

..
1 + (𝑧̈𝑧𝑧𝑧1𝜃𝜃𝜃𝜃1 − 𝑥𝑥𝑥𝑥

..
1𝜑𝜑𝜑𝜑1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥̈𝑥𝑥𝑥1𝜃𝜃𝜃𝜃1 − 𝑧𝑧𝑧𝑧

..
1𝜑𝜑𝜑𝜑1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝜃𝜃𝜃𝜃

..
1𝑧𝑧𝑧𝑧3 + 2𝜃𝜃𝜃𝜃

.
1𝑧𝑧𝑧𝑧

.
3 +                (9)                             

+2𝜑𝜑𝜑𝜑
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦

.
1 + 𝑦𝑦𝑦𝑦

.
3) + ℎ𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦

.
3 + 𝑘𝑘𝑘𝑘𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = −𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦

.
3),     

       

where    fx,      fy,      fz    are  the  friction  coeffici�-
ents  between  the  load  and  the  working  member  
in  the  directions  of  x,  y,  z  (subsequently  will  be  
obtained:  fx  =    fy  =    fz    =    f);  Ny  –  normal  reac-
tion  of  the  load  on  the  lateral  surface  (Fig.  3);  
Nz  –  normal  reaction  of  the  load  on  the  bottom;  
sign  represents  a  nonlinear  function  and  is  deter-
mined  depending  on  the  sign  of  velocity  V:  sign  
=  1,  when  V  <  0  and  sign  =  -1,  when  V  >  0.

The  moments  of  the  friction  forces  towards  
the  axes  are  expressed  as  follows:

where  zy rr ,   are  the  distances  from  friction  
surface  3333 zyxO to  the  system  axes.  The  fric�-
tion  force  moments  towards  the  system  (working  
member)  1111 zyxO are  expressed  as  follows:

where  zy hh ,   are  the  distances  from  the  fric�-
tion  surface  111 yxO   to  the  system  axes.

In  the  given  example,  working  member  is  
bound  from  two  sides  with  the  planes:  111 yxO
,    111 xzO ,  whereas  in  the  direction  of  11 xO
it  is  open;  in  this  case,  on  111 zyO surface  the  
friction  force  is  not  present,  and  therefore,  rx,  hx  
multiplier  members  in  (4),  (5)  expressions  equal  
to  zero.

4.  The  excitation  force                                                  

In  a  real  machine,  as  a  result  of  initial  errors,  
the  excitation  force  may  not  be  exactly  in  the  
center  of  gravity,  but  be  moved  with  eccen-
tricities  ex,  ey,  ez  (which  was  mention  above  as  
well);  Besides,  when  the  mass  M1  is  dynami-
cally  affected,  the  mass  deviates  with  respect  
to  the  external  (excitation)  force  by  111 ,, zyx
coordinates  at  the  expense  of  deformation  of  the  
elastic  system.

As  an  illustration,  on  Fig.4,  the  condition  of  
M1  mass  is  shown  before  and  after  the  engage-

ment  of  excitation  Q(t)  force;  M1  mass  is  shown  
in  two  different  conditions  –  I,  II;  I  corresponds  
to  the  initial  condition,  when  Q(t)  direction  co-
incides  the  direction  of  non-elastic  spring  axis  
and  passes  on  the  center  of  gravity  OO1  of  M1;  
II  corresponds  to  the  real  condition  of  M1  mass,  
i.e.  considering  the  deviations  caused  by  toler-
ances  on  the  machine  manufacturing  and  instal-
lation  [3,  5,  23,  26, 27].  The  deviations,  which  
are  characterized  with  corners  and  eccentricities  
represent  the  reason  of  generation  of  friction  
forces,  which,  along  with  bending  deformations  
of  the  spring  1,  cause  the  vibration  of  mass  M1  
in  space.

The  projections  of  force  Q  on  the  axes  of  
coordinate  system    1111 zyxO   will  be  expressed  
as  follows:

The      moments  of  Q  force  are  defined  by  
the  formulas  of  vector  algebra  theory  [6];  If  
we  define  point  N  ,  on  which  Q  force  vector  
passes,  then  the  moment  of  this  vector  towards  

1111 zyxO coordinate  system  axes  will  be  as  
follows:
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When  considering  the  spatial  (rectilinear  or  rotational)  motion  of  a  technological  load,  
in  addition  to  the  normal  reaction,  as  a  result,  moments  of  those  forces  arise  on  this  
or  that  surface  of  the  working  member  (Fig.  3): 

 
(𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑞𝑞𝑞𝑞 = (𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑞𝑞𝑞𝑞 ⋅ 𝑟𝑟𝑟𝑟𝑞𝑞𝑞𝑞 ,                                (2) 

 
Where  fq  is  the  friction  coefficient  between    the  load  and  the  working  body  (fq  is  
normally  obtained  in  each  cycle  of  the  variable  motion  depending  on  the  dynamical  
condition  of  the  load  –  sliding  on  the  surface,  stoppage,  etc.);  qr   is  the  distance  from  
friction  surface  to  the  center  of  gravity  of  the  load  along  the  coordinates. 
The  components  of  the  friction  force  can  be  expressed  as  follows: 

 
𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥3 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥

.
3);

                     𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦3 = 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦
.
3);                     (3)

𝐹𝐹𝐹𝐹𝑧𝑧𝑧𝑧3 = 𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝑧𝑧
.
3), 

 
 

 
 
 
 
 
 
 
 
 
 

FFiigg..  33.. To determine the friction forces and moments affecting the grainy load 
 
where    fx,      fy,      fz    are  the  friction  coefficients  between  the  load  and  the  working  
member  in  the  directions  of  x,  y,  z  (subsequently  will  be  obtained:  fx  =    fy  =    fz    =    f);  
Ny  –  normal  reaction  of  the  load  on  the  lateral  surface  (Fig.  3);  Nz  –  normal  reaction  
of  the  load  on  the  bottom;  sign  represents  a  nonlinear  function  and  is  determined  
depending  on  the  sign  of  velocity  V:  sign  =  1,  when  V  <  0  and  sign  =  -1,  when  V  >  
0. 
The  moments  of  the  friction  forces  towards  the  axes  are  expressed  as  follows: 

 

                (𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑥𝑥𝑥𝑥3 = (𝐹𝐹𝐹𝐹𝑧𝑧𝑧𝑧3𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦 − 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦3𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝜃𝜃
.
3); 

 
                               (𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑦𝑦𝑦𝑦3 = 𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥3𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ψ̇3);                         (4) 

Fig. 4. The position of the working member before 
and after the engagement of the force
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𝑚𝑚𝑚𝑚3𝑧𝑧𝑧𝑧
..
3 + 𝑚𝑚𝑚𝑚3[(𝑧𝑧𝑧𝑧

..
1 + 𝑥̈𝑥𝑥𝑥1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑦𝑦𝑦𝑦

..
1𝜃𝜃𝜃𝜃1 + 𝜃𝜃𝜃𝜃

..
1𝑦𝑦𝑦𝑦3 + 2𝜃𝜃𝜃𝜃

.
1𝑦𝑦𝑦𝑦

.
3 − 

−2𝜓𝜓𝜓𝜓
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑧𝑧𝑧𝑧(𝑧𝑧𝑧𝑧

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑧𝑧𝑧𝑧

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑧𝑧𝑧𝑧

.
3 + 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 
 
where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 
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This  approach  involves  obtaining  vector  equations  of  velocities  of  Ai  and  Bi  free  points  
of  the  masses  (relative,  translational,  absolute)  and  their  expansion  on  the  coordinate  
axes,  then  their  projection  on  the  coordinate  axes  of  the  working  member  using  Euler’s  
angles  [17].  Subsequently,  by  obtaining  the  functions  of  the  total  kinetic  and  potential  
energies  and  resistance,  and  using  the  2nd  order  Lagrange  equation,  we  obtain  the  
differential  equation  of  spatial  motion  (9)  of  each  mass. 
If  we  assume  that  the  reaction  of  the  grainy  load  in  the  equations  of  the  working  
member  (1)  is  equal  to  0  and  also  in  the  left  part  of  the  equations  we  consider  only  
linear  constituents,  then  the  system  of  differential  equations  of  the  spatial  motion  of  
the  working  member  can  vectorically    be  expressed  in  this  way: 
 
  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞

..
𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖

.
+ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗 = 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞𝑄𝑄𝑄𝑄𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡),    (8)                                                                                       

                   
where  iM is  the  mass  of  the  working  member  and  the  moments  of  inertia  during  the  
rectilinear  and  rotational  motion  respectively;  iq   is  the  coordinates  of  spatial  motion:  
x1,  y1,  z1,  θ1, ψ1, ϕ1;      ic   is  the  coefficient  of  resistance  towards  the  axes  of  spatial  
coordinates;  ib ,  id   coefficients  express  the  interdependence  of  linear-spatial  motions;  

jq -  the  corresponding  rotational  motion  of  a  linear  motion  on  different  axes;  qF   -  
the  projection  of  excitation  force  and  moment  on  the  corresponding  axis;  qA -  force  
coefficient  on  the  corresponding  axis. 
As  mentioned,  certain  structural,  physical,  and  other  permissible  errors  occur  during  the  
manufacturing  and  installation  of  the  vibratory  machine  [12,  19],  which  is  why  the  
excitation  force  is  not  transmitted  to  the  center  of  gravity  of  the  working  body  precisely;  
as  a  result,  the  force  constituents  on  the  coordinate  axes  are  obtained,  as  well  as  the  
corresponding  moments  towards  the  center  of  gravity.  Normally,  such  deviations  are  not  
taken  into  account  due  to  their  smallness,  but  in  resonance  machines,  they  can  have  a  
significant  influence  on  the  technological  process. 
After  determining  the  total  kinetic  and  potential  energies  of  the  masses  M1  and  M3  and  
obtaining  the  analytical  expressions  (the  expansion  on  the  coordinate  axes  considering  
Euler’s  angles  [17],  working  member  inclination  and  angles  of  vibrations),  using  the  2nd  
order  Lagrange  equation,  the  system  of  differential  equations  of  material’s  spatial  motion  
is  obtained:         

   
 
𝑚𝑚𝑚𝑚3𝑥𝑥𝑥𝑥

..
3 + 𝑚𝑚𝑚𝑚3[(𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − (𝑧𝑧𝑧𝑧

..
1 + 𝑥𝑥𝑥𝑥

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝜓𝜓𝜓𝜓

..
1𝑧𝑧𝑧𝑧3 − 𝑦𝑦𝑦𝑦

..
1𝜑𝜑𝜑𝜑1 + 2𝜓𝜓𝜓𝜓

.
1𝑧𝑧𝑧𝑧

.
3 − 

−𝜑𝜑𝜑𝜑
..
1𝑦𝑦𝑦𝑦 − 2𝜑𝜑𝜑𝜑

.
1𝑦𝑦𝑦𝑦

.
3] + ℎ𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑧𝑧𝑧𝑧

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑥𝑥𝑥𝑥

.
3 − 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −(𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧 + 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 

𝑚𝑚𝑚𝑚3𝑦𝑦𝑦𝑦
..
3 + 𝑚𝑚𝑚𝑚3[𝑦𝑦𝑦𝑦

..
1 + (𝑧̈𝑧𝑧𝑧1𝜃𝜃𝜃𝜃1 − 𝑥𝑥𝑥𝑥

..
1𝜑𝜑𝜑𝜑1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥̈𝑥𝑥𝑥1𝜃𝜃𝜃𝜃1 − 𝑧𝑧𝑧𝑧

..
1𝜑𝜑𝜑𝜑1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝜃𝜃𝜃𝜃

..
1𝑧𝑧𝑧𝑧3 + 2𝜃𝜃𝜃𝜃

.
1𝑧𝑧𝑧𝑧

.
3 +                (9)                             

+2𝜑𝜑𝜑𝜑
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦

.
1 + 𝑦𝑦𝑦𝑦

.
3) + ℎ𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦

.
3 + 𝑘𝑘𝑘𝑘𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = −𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦

.
3),     

       

5.  Mathematical  model  of  “Grainy  
material  –  working  member”  system  
spatial  vibratory  motion

To  obtain  the  differential  equation  system  of  
load’s  spatial  vibratory  movement,  the  dynamical  
model  presented  on  Fig.1  was  considered.  The  
systemic  approach  [17]  was  used,  which  allows  
to  fully  describe  they  dynamic  interaction  of  
masses.

To  obtain  the  full  mathematical  picture  of  
the  material  and  working  member  interaction,  
we  used  the  classical  theory  [17,  19]  of  relative  
(technological  load),  translational  (working  mem-
ber)  and  absolute  (technological  load)  motion  of  
bodies,  which  corresponds  to  the  principles  of  
vibratory  displacement  of  one  body  in  relation  
to  the  other.

This  approach  involves  obtaining  vector  equa-
tions  of  velocities  of  Ai  and  Bi  free  points  of  the  
masses  (relative,  translational,  absolute)  and  their  
expansion  on  the  coordinate  axes,  then  their  pro-
jection  on  the  coordinate  axes  of  the  working  
member  using  Euler’s  angles  [17].  Subsequently,  
by  obtaining  the  functions  of  the  total  kinetic  
and  potential  energies  and  resistance,  and  using  
the  2nd  order  Lagrange  equation,  we  obtain  the  
differential  equation  of  spatial  motion  (9)  of  
each  mass.

If  we  assume  that  the  reaction  of  the  grainy  
load  in  the  equations  of  the  working  member  
(1)  is  equal  to  0  and  also  in  the  left  part  of  the  
equations  we  consider  only  linear  constituents,  
then  the  system  of  differential  equations  of  the  
spatial  motion  of  the  working  member  can  vec-
torically    be  expressed  in  this  way:

  ,    (8)                                                                                      
                  

where  iM is  the  mass  of  the  working  member  
and  the  moments  of  inertia  during  the  rectilinear  
and  rotational  motion  respectively;  iq   is  the  co-
ordinates  of  spatial  motion:  x1,  y1,  z1,  θ1, ψ1, ϕ1;      

ib   is  the  coefficient  of  resistance  towards  the  
axes  of  spatial  coordinates;  ib ,  id   coefficients  
express  the  interdependence  of  linear-spatial  mo-
tions;  jq -  the  corresponding  rotational  motion  
of  a  linear  motion  on  different  axes;  qF   -  the  
projection  of  excitation  force  and  moment  on  
the  corresponding  axis;  qA -  force  coefficient  on  
the  corresponding  axis.

As  mentioned,  certain  structural,  physical,  and  
other  permissible  errors  occur  during  the  manu-
facturing  and  installation  of  the  vibratory  machine  
[12,  19],  which  is  why  the  excitation  force  is  
not  transmitted  to  the  center  of  gravity  of  the  
working  body  precisely;  as  a  result,  the  force  
constituents  on  the  coordinate  axes  are  obtained,  
as  well  as  the  corresponding  moments  towards  
the  center  of  gravity.  Normally,  such  deviations  
are  not  taken  into  account  due  to  their  smallness,  
but  in  resonance  machines,  they  can  have  a  sig-
nificant  influence  on  the  technological  process.

After  determining  the  total  kinetic  and  po-
tential  energies  of  the  masses  M1  and  M3  and  
obtaining  the  analytical  expressions  (the  expan-
sion  on  the  coordinate  axes  considering  Euler’s  
angles  [17],  working  member  inclination  and  an-
gles  of  vibrations),  using  the  2nd  order  Lagrange  
equation,  the  system  of  differential  equations  of  
material’s  spatial  motion  is  obtained:        

8 
 

This  approach  involves  obtaining  vector  equations  of  velocities  of  Ai  and  Bi  free  points  
of  the  masses  (relative,  translational,  absolute)  and  their  expansion  on  the  coordinate  
axes,  then  their  projection  on  the  coordinate  axes  of  the  working  member  using  Euler’s  
angles  [17].  Subsequently,  by  obtaining  the  functions  of  the  total  kinetic  and  potential  
energies  and  resistance,  and  using  the  2nd  order  Lagrange  equation,  we  obtain  the  
differential  equation  of  spatial  motion  (9)  of  each  mass. 
If  we  assume  that  the  reaction  of  the  grainy  load  in  the  equations  of  the  working  
member  (1)  is  equal  to  0  and  also  in  the  left  part  of  the  equations  we  consider  only  
linear  constituents,  then  the  system  of  differential  equations  of  the  spatial  motion  of  
the  working  member  can  vectorically    be  expressed  in  this  way: 
 
  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞

..
𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖

.
+ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗 = 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞𝑄𝑄𝑄𝑄𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡),    (8)                                                                                       

                   
where  iM is  the  mass  of  the  working  member  and  the  moments  of  inertia  during  the  
rectilinear  and  rotational  motion  respectively;  iq   is  the  coordinates  of  spatial  motion:  
x1,  y1,  z1,  θ1, ψ1, ϕ1;      ic   is  the  coefficient  of  resistance  towards  the  axes  of  spatial  
coordinates;  ib ,  id   coefficients  express  the  interdependence  of  linear-spatial  motions;  

jq -  the  corresponding  rotational  motion  of  a  linear  motion  on  different  axes;  qF   -  
the  projection  of  excitation  force  and  moment  on  the  corresponding  axis;  qA -  force  
coefficient  on  the  corresponding  axis. 
As  mentioned,  certain  structural,  physical,  and  other  permissible  errors  occur  during  the  
manufacturing  and  installation  of  the  vibratory  machine  [12,  19],  which  is  why  the  
excitation  force  is  not  transmitted  to  the  center  of  gravity  of  the  working  body  precisely;  
as  a  result,  the  force  constituents  on  the  coordinate  axes  are  obtained,  as  well  as  the  
corresponding  moments  towards  the  center  of  gravity.  Normally,  such  deviations  are  not  
taken  into  account  due  to  their  smallness,  but  in  resonance  machines,  they  can  have  a  
significant  influence  on  the  technological  process. 
After  determining  the  total  kinetic  and  potential  energies  of  the  masses  M1  and  M3  and  
obtaining  the  analytical  expressions  (the  expansion  on  the  coordinate  axes  considering  
Euler’s  angles  [17],  working  member  inclination  and  angles  of  vibrations),  using  the  2nd  
order  Lagrange  equation,  the  system  of  differential  equations  of  material’s  spatial  motion  
is  obtained:         

   
 
𝑚𝑚𝑚𝑚3𝑥𝑥𝑥𝑥

..
3 + 𝑚𝑚𝑚𝑚3[(𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − (𝑧𝑧𝑧𝑧

..
1 + 𝑥𝑥𝑥𝑥

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝜓𝜓𝜓𝜓

..
1𝑧𝑧𝑧𝑧3 − 𝑦𝑦𝑦𝑦

..
1𝜑𝜑𝜑𝜑1 + 2𝜓𝜓𝜓𝜓

.
1𝑧𝑧𝑧𝑧

.
3 − 

−𝜑𝜑𝜑𝜑
..
1𝑦𝑦𝑦𝑦 − 2𝜑𝜑𝜑𝜑

.
1𝑦𝑦𝑦𝑦

.
3] + ℎ𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑧𝑧𝑧𝑧

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑥𝑥𝑥𝑥

.
3 − 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −(𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧 + 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 

𝑚𝑚𝑚𝑚3𝑦𝑦𝑦𝑦
..
3 + 𝑚𝑚𝑚𝑚3[𝑦𝑦𝑦𝑦

..
1 + (𝑧̈𝑧𝑧𝑧1𝜃𝜃𝜃𝜃1 − 𝑥𝑥𝑥𝑥

..
1𝜑𝜑𝜑𝜑1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥̈𝑥𝑥𝑥1𝜃𝜃𝜃𝜃1 − 𝑧𝑧𝑧𝑧

..
1𝜑𝜑𝜑𝜑1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝜃𝜃𝜃𝜃

..
1𝑧𝑧𝑧𝑧3 + 2𝜃𝜃𝜃𝜃

.
1𝑧𝑧𝑧𝑧

.
3 +                (9)                             

+2𝜑𝜑𝜑𝜑
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦

.
1 + 𝑦𝑦𝑦𝑦

.
3) + ℎ𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦

.
3 + 𝑘𝑘𝑘𝑘𝑦𝑦𝑦𝑦3𝑦𝑦𝑦𝑦3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝜑𝜑𝜑𝜑1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = −𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦3𝑁𝑁𝑁𝑁𝑧𝑧𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦

.
3),     
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𝑚𝑚𝑚𝑚3𝑧𝑧𝑧𝑧
..
3 + 𝑚𝑚𝑚𝑚3[(𝑧𝑧𝑧𝑧

..
1 + 𝑥̈𝑥𝑥𝑥1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑦𝑦𝑦𝑦

..
1𝜃𝜃𝜃𝜃1 + 𝜃𝜃𝜃𝜃

..
1𝑦𝑦𝑦𝑦3 + 2𝜃𝜃𝜃𝜃

.
1𝑦𝑦𝑦𝑦

.
3 − 

−2𝜓𝜓𝜓𝜓
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑧𝑧𝑧𝑧(𝑧𝑧𝑧𝑧

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑧𝑧𝑧𝑧

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑧𝑧𝑧𝑧

.
3 + 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 
 
where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 
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where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 
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where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 
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As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
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9 
 

𝑚𝑚𝑚𝑚3𝑧𝑧𝑧𝑧
..
3 + 𝑚𝑚𝑚𝑚3[(𝑧𝑧𝑧𝑧

..
1 + 𝑥̈𝑥𝑥𝑥1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑦𝑦𝑦𝑦

..
1𝜃𝜃𝜃𝜃1 + 𝜃𝜃𝜃𝜃

..
1𝑦𝑦𝑦𝑦3 + 2𝜃𝜃𝜃𝜃

.
1𝑦𝑦𝑦𝑦

.
3 − 

−2𝜓𝜓𝜓𝜓
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑧𝑧𝑧𝑧(𝑧𝑧𝑧𝑧

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑧𝑧𝑧𝑧

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑧𝑧𝑧𝑧

.
3 + 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 
 
where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 

9 
 

𝑚𝑚𝑚𝑚3𝑧𝑧𝑧𝑧
..
3 + 𝑚𝑚𝑚𝑚3[(𝑧𝑧𝑧𝑧

..
1 + 𝑥̈𝑥𝑥𝑥1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑦𝑦𝑦𝑦

..
1𝜃𝜃𝜃𝜃1 + 𝜃𝜃𝜃𝜃

..
1𝑦𝑦𝑦𝑦3 + 2𝜃𝜃𝜃𝜃

.
1𝑦𝑦𝑦𝑦

.
3 − 

−2𝜓𝜓𝜓𝜓
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑧𝑧𝑧𝑧(𝑧𝑧𝑧𝑧

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑧𝑧𝑧𝑧

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑧𝑧𝑧𝑧

.
3 + 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 
 
where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 

9 
 

𝑚𝑚𝑚𝑚3𝑧𝑧𝑧𝑧
..
3 + 𝑚𝑚𝑚𝑚3[(𝑧𝑧𝑧𝑧

..
1 + 𝑥̈𝑥𝑥𝑥1𝜓𝜓𝜓𝜓1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + (𝑥𝑥𝑥𝑥

..
1 − 𝑧𝑧𝑧𝑧

..
1𝜓𝜓𝜓𝜓1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 − 𝑦𝑦𝑦𝑦

..
1𝜃𝜃𝜃𝜃1 + 𝜃𝜃𝜃𝜃

..
1𝑦𝑦𝑦𝑦3 + 2𝜃𝜃𝜃𝜃

.
1𝑦𝑦𝑦𝑦

.
3 − 

−2𝜓𝜓𝜓𝜓
.
1𝑥𝑥𝑥𝑥

.
3] + ℎ𝑧𝑧𝑧𝑧(𝑧𝑧𝑧𝑧

.
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑥𝑥𝑥𝑥

.
1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼1 + 𝑧𝑧𝑧𝑧

.
3) + ℎ𝑥𝑥𝑥𝑥3𝑧𝑧𝑧𝑧

.
3 + 𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧3 + 𝑚𝑚𝑚𝑚3𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 − 𝜓𝜓𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼) = 

= −𝑓𝑓𝑓𝑓𝑧𝑧𝑧𝑧3𝑁𝑁𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥
.
3), 

 
 
where  𝛼𝛼𝛼𝛼1 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,  α    is  the  inclination  of  working  member  towards  the  horizon  and  
β  ––    the  angle  of  vibration  (Fig.1). 
In  the  presented  work,  with  the  help  of  equations  (9),  this  time  we  consider  movement  
of  the  material  only  in  the  linear  spatial  directions  and  study  of  the  influence  of  various  
non-working  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  member. 
In  the  process  of  mathematical  modelling,  the  change  of  the  spatial  vibrations  
(strengthening,  weakening)  occurs  not  by  variation  of  the  vibratory  exciter  force,  but  
by  its  own  vibration  entering  resonance  in  different  directions  with  frequency  (vibration)  
of  the  constant  excitation  force  and  therefore  its  amplitude  changes  (increases).  Such  an  
approach  allows  us  to  investigate  and  establish  the  influence  of  each  non-working  
vibration  of  the  working  member  on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  and  acts  in  combination  with  the  
aforementioned  vibration. 
As  an  example,  let’s  examine  the  lateral  displacement  equation  (10)  of  the  working  
member  from  the  vector  expression  (8).    Let’s  assume  that  the  excitation  force  changes  
accordimg  to  sinusoidal  law,  with  frequency  -  ωexc  =  50  Hz,  and  the  longitudinal  
(working)  vibration  amplitude  of  the  working  member  is  equal  to  1.6  mm: 
 
        𝑀𝑀𝑀𝑀1𝑦̈𝑦𝑦𝑦1 + 𝑐𝑐𝑐𝑐𝑦𝑦𝑦𝑦𝑦̇𝑦𝑦𝑦1 + 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦1 − 𝑑𝑑𝑑𝑑𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1 == 𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ω(𝑡𝑡𝑡𝑡);                                              (10)                                                                 

 
To  amplify  it,      𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦1  should  change  so  that  its  own  frequency  ω𝑦𝑦𝑦𝑦1  approaches  50  Hz  
(should  enter  in  resonance  with  the  excitation  force);  Such  approach  allows  to  observe  
the  tendency  of  its  influence  on  the  parameters  of  material  displacement  (Fig.5). 
 

66..    SSoommee    ooff    tthhee    mmooddeelliinngg    rreessuullttss      
  

In  the  figures  are  given  the  graphs,  where  the  influence  of  some  partial  (of  non-working 
direction)  vibrations  on  the  process  of  material’s  displacement  is  shown. 
Fig.5  shows  the  impact  of  transverse  vibration  (y1)  on  vertical  displacement  (z3)  and  
velocity  (Vx  );  As  in  other  instances  (Figs.  6,  7,  8),  x1 is  the  amplitude  of  working  
vibration  and  as  a  consequence  of  the  modeling  condition,  it  is  constant  for  each  
experiment,  when  ωexc  takes  the  values:  25,  50,  100  Hz  (as  indicated  on  the  figures). 
Fig.  6  shows  the  change  (increase)  of  vertical  partial  amplitude  (z1)  of  the  working  body  
and  the  corresponding  changes  of  dynamical  parameters  of  motion  (z3,  Vx,  Nz  –  reaction  
of  the  material  on  the  bottom  and  Ny  –  reaction  of  the  material  on  the  lateral  surface). 

where                     α    is  the  inclination  of  
working  member  towards  the  horizon  and  β  –  
the  angle  of  vibration  (Fig.1).

In  the  presented  work,  with  the  help  of  equa-
tions  (9),  this  time  we  consider  movement  of  
the  material  only  in  the  linear  spatial  directions  
and  study  of  the  influence  of  various  non-work-
ing  vibrations  (y1,  z1,  θ1, ψ1, ϕ1)  of  the  working  
member.

In  the  process  of  mathematical  modelling,  the  
change  of  the  spatial  vibrations  (strengthening,  
weakening)  occurs  not  by  variation  of  the  vi-
bratory  exciter  force,  but  by  its  own  vibration  
entering  resonance  in  different  directions  with  
frequency  (vibration)  of  the  constant  excitation  
force  and  therefore  its  amplitude  changes  (in-
creases).  Such  an  approach  allows  us  to  in-
vestigate  and  establish  the  influence  of  each  
non-working  vibration  of  the  working  member  
on  the  VTT  process,  when  the  working  member  
operates  in  normal  resonance  vibratory  regime  
and  acts  in  combination  with  the  aforementioned  
vibration.

As  an  example,  let’s  examine  the  lateral  dis-
placement  equation  (10)  of  the  working  member  
from  the  vector  expression  (8).    Let’s  assume  
that  the  excitation  force  changes  accordimg  to  
sinusoidal  law,  with  frequency  -  w

To  amplify  it,        should  change  so  that  
its  own  frequency       approaches  50  Hz  
(should  enter  in  resonance  with  the  excitati-
on  force);  Such  approach  allows  to  observe  
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..
1𝜑𝜑𝜑𝜑1,  𝑧̈𝑧𝑧𝑧1𝜃𝜃𝜃𝜃1,  etc.),  which  is  reflected  in  the  change  in  material  velocity  and  other  
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characteristics  of  the  material,  under  the  conditions  of  working  vibration  (ωexc  =  25  Hz);  
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the  tendency  of  its  influence  on  the  parame-
ters  of  material  displacement  (Fig.5).

6.  Some  of  the  modeling  results  

In  the  figures  are  given  the  graphs,  where  the  
influence  of  some  partial  (of  non-working

direction)  vibrations  on  the  process  of  mate-
rial’s  displacement  is  shown.

Fig.5  shows  the  impact  of  transverse  vibration  
(y1)  on  vertical  displacement  (z3)  and  velocity  (Vx  
);  As  in  other  instances  (Figs.  6,  7,  8),  x1  is  the  
amplitude  of  working  vibration  and  as  a  conse-
quence  of  the  modeling  condition,  it  is  constant  
for  each  experiment,  when         takes  the  values:  
25,  50,  100  Hz  (as  indicated  on  the  figures).

Fig.  6  shows  the  change  (increase)  of  vertical  
partial  amplitude  (z1)  of  the  working  body  and  
the  corresponding  changes  of  dynamical  param-
eters  of  motion  (z3,  Vx,  Nz  –  reaction  of  the  
material  on  the  bottom  and  Ny  –  reaction  of  the  
material  on  the  lateral  surface).

It  can  also  be  noticed  that  different  partial  vi-
brations’  (y1,  z1  ,  etc.)  entry  into  resonance  causes  
changes  in  the  inertial  members  associated  with  
it  in  equations  (8)  (for  example, 
etc.),  which  is  reflected  in  the  change  in  mate-
rial  velocity  and  other  dynamical  characteristics.  
(working  vibration  frequency  

Fig.  7  presents  the  influence  of  trans-
verse  partial  vibration  (y1)  on  the  dynami-
cal  characteristics  of  the  material,  under  the  
conditions  of  working vibration                                                                                                                            
z3,  y3  are  vertical  and  transverse  displacements,  
Vx  –  the  velocity  of  displacement  in  transverse  
(x3)  direction.

Fig. 5. The dependence of material movement velocity (Vx ) and vertical trajectory (z3) on the transverse 
vibrations of working member ( y1), when working vibration (x1) value is constant

 
 

 

 

 

 

Fig. 5. The dependence of material movement velocity (Vx ) and vertical trajectory (z3) on the 
transverse vibrations of working member ( y1), when working vibration (x1) value is constant 
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Fig. 6. The dependence of material movement velocity (Vx), vertical trajectory (z3) and reaction forces 
(Nz , Ny) on the vertical vibrations of working member (z1)

Fig. 7. The dependence of material movement velocity (Vx), vertical trajectory (z3) and transverse trajec-
tory (y3) on the transverse vibrations of the working member (y1)

Fig. 8. The dependence of material movement velocity (Vx) and vertical trajectory (z3) on the rotational 
vibrations of the working member (ψ1)
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77..    CCoonncclluussiioonn      
  

1)  The  modeling  has  shown  that  the  partial  oscillations  of  resonance  vibrofeeder  working  
member,  in  combination  with  main  (working)  vibration,  significantly  influence  the  
regularity  of  material  displacement;  2)  Some  partial  vibrations  (for  example,  in  vertical  
direction)  increase  the  velocity  of  material  displacement,  which  indicates  the  advisability  
of  constructional  modernization  of  the  machine;  3)  Most  partial  oscillations  have  a  
negative  effect  on  the  performance  of  the  machine  (displacement  velocity  reduces),  
which  indicates  the  need  for  manufacturers  to  reduce  the  tolerances  on  the  accuracy  of  
machine  manufacturing  and  installation. 
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7.  Conclusion  

1)  The  modeling  has  shown  that  the  partial  
oscillations  of  resonance  vibrofeeder  working  
member,  in  combination  with  main  (working)  
vibration,  significantly  influence  the  regularity  of  
material  displacement;  2)  Some  partial  vibrations  
(for  example,  in  vertical  direction)  increase  the  
velocity  of  material  displacement,  which  indi-
cates  the  advisability  of  constructional  modern-
ization  of  the  machine;  3)  Most  partial  oscilla-
tions  have  a  negative  effect  on  the  performance  
of  the  machine  (displacement  velocity  reduces),  
which  indicates  the  need  for  manufacturers  to  
reduce  the  tolerances  on  the  accuracy  of  ma-
chine  manufacturing  and  installation.
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